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Abstract
A set of orthonormal color matching functions is developed, in which the first is an all-positive
achromatic function, the second is red-green, and the third can be loosely described as blue-
yellow. The achromatic function, proportional to the familiar y6, is a sum of red and green cones.
The red-green function uses the same cone sensitivities, but subtracted, with coefficients so that
it is orthogonal to the achromatic one. The third function involves all three cones, but is
primarily a blue sensitivity. Using this basis to compute the tristimulus vectors of narrow-band
lights at unit power gives Jozef Cohen’s Locus of Unit Monochromats, (LUM) an invariant
shape now graphed in a space where the axes have intuitive meaning. The extreme points of the
LUM reveal the wavelengths that act most strongly in mixtures, a close approximation to
William Thornton’s Prime Colors. In effect, decades of research converge in three functions and
a vectorial schema, demystifying such issues as color rendering and the selection of additive
primaries.

<165 words>

Introduction
With regard to things that stimulate our senses, we all know what amplitude

means—usually. A high-amplitude noise SOUNDS LOUD. Summer sunlight looks bright.
When adaptation state is controlled, sensation is often a simple—if nonlinear—function of
physical amplitude. Color mixing is different, and we know this too. In a color match, lights add
linearly, and the match does not depend on adaptation conditions. Within that context, lights
have a direction and an amplitude in color space. Algebraically, we model the mixing of lights
by adding triplets of numbers. In the usual system, when lights 1 and 2 are superimposed,
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We may speak of the column matrices in Eq. (1) as tristimulus vectors, but vector diagrams and
amplitudes in XYZ space are seldom mentioned.

Jozef Cohen saw that any light can be mapped to a unique function of wavelength, its
fundamental metamer1. In turn, fundamental metamers map to vectors in a 3-space2. Cohen’s
analysis begins with any valid set of color matching functions, even the arbitrary x6, y6, z6, then
leaps to an invariant formulation, retaining the facts of color matching while losing the arbitrary
representation.
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In this article, a set of orthonormalized opponent color functions is developed. The
algebra looks different from Cohen’s, but leads to the same diagrams. Like any set of color
matching functions, the orthonormal ones permit a spectral power distribution (471 numbers
perhaps) to be reduced to a tristimulus vector, 3 numbers. The components of the tristimulus
vector will have intuitive meaning in terms of color names, and also mathematical meaning as
components of the fundamental metamer.

The main result, the set of three functions, is simple in itself: a set of graphs, or a table of
numbers, to be used in place of other tabulated color matching functions. A method for
generating the functions could be stated in a few sentences, reducing this article to a paragraph
and a set of graphs. In the event, many paragraphs will be used to put the orthonormal CMFs into
the context of past research and future applications.

Background
Alternate sets of CMFs. As an arbiter of matches, a set of color matching functions (CMFs) is
not unique; a new set made by linear transformation of an old set predicts the same matches so
long as the transformation is reversible (see Appendix A). Figure 1 shows 4 sets of CMFs, all
equivalent to the CIE 2° Observer in the color matches that they predict. In Fig. 1a is a set of
color matching functions in the root meaning of the phrase, the matches that the 2° Observer
would make in a visual colorimeter, when the primary lights are narrow bands at 603, 538, 446
nm. In Fig. 1b is a set of cone sensitivities, while in Fig. 1c are the usual functions x6, y6, z64.
Finally, in Fig. 1d are a set of opponent functions, essentially Guth’s 1980 model with the
functions normalized5. Guth started with slightly different color matching functions but here the
Guth-like functions are based on the the 2° standard observer (see Appendices B and C). Again,
if the only question is whether a light L1 will match a light L2, then the 4 sets of CMFs in Fig. 1
will agree on the answer, yes or no.

Superimposing two lights corresponds to adding their tristimulus vectors, and by extension other
concepts such as vector amplitude or decomposition should apply to color stimuli. The benefit of
vectorial ideas is hard to see in the XYZ schema, but will be more apparent with the right choice
of cmfs.

Cone Sensitivities. Consider the sensitivities of the three cone systems, Fig. 1b. Whatever
stimulus vector amplitude is, it should vanish at the ends of the spectrum and show a local
minimum near 495 nm, where all cone sensitivities are low. We also see why the idea of
amplitude in color mixing is not as simple as it might be. The cone sensitivities overlap! This is
to our benefit in catching plenty of photons and in finely discriminating hues in the red to green
range, but it complicates the discussion of color mixing. Consider, for example, the traditional
instructions for transforming color mixing data to new primaries4. If the 3 cone types had non-
overlapping spectral sensitivities, the data would trace out those functions directly. The
wavelengths of peak sensitivity could become the primaries in further experiments. Because of
overlap, we find a more subtle reality in which changing one primary wavelength alters all 3
functions.

To put it another way, all of colorimetry is about overlap. Overlapping cone sensitivities
can be added and subtracted to make the interesting and dissimilar graphs of Figure 1. If non-
overlapping functions were added and subtracted, the results would show a more consistent
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resemblance to the underlying cone functions, a qualitatively different situation.

Opponent Colors, etc. Have these issues of amplitude and overlap been addressed before? Yes,
though not with those words, usually. Opponent-color models emphasize the difference between
the overlapping red and green sensitivities, literally subtracting one function from the other, with
some coefficients5. Cornsweet showed the role of overlap for a dichromatic eye, by finding a
“spectral locus” of stimuli as wavelength is varied for a light of fixed quantum flux6. Cohen’s
“locus of unit monochromats,” though different from Cornsweet’s locus, is another graphic
whose shape comes from spectrally overlapping sensitivities1,2.

Color as it is taught. Superimposed in Fig. 2 are two sets of color matching functions,
calculated data corresponding to the settings of the idealized 2° observer, in matching a narrow-
band test light by 3 narrow-band primaries. For the solid lines, the primary set is {650, 530,
460 nm}, approximating Wright’s primaries, while the primaries for the dotted functions are
{629, 543, 461 nm}, similar to those used by Guild7. The same facts lead to alternate sets of
graphs, an awkward situation. Favoring monotony over mystery, teachers and students may rush
to embrace the standardized XYZ system4. However, despite its puzzling features, the mixing of
3 primaries is a practical example, a model for television and other color technologies.

Fig. 3 shows the NTSC primaries for color television8 in relation to the wavelengths of peak
absorption by cones. The peak for red cones is in the yellow, but the red primary—not
surprisingly—is in the red, or at least in the orange. These facts are well known, but seldom
discussed. The television primaries were chosen by trial and error, a reasonable approach for that
well-defined problem9.

In Fig. 2, looking to the settings of the red primary, Guild’s primaries had a possible advantage
over Wright’s. That is, Guild needed less power at 629 nm than Wright did in his red channel at
650 nm, Table 1. In the horizontal dimension, the red setting has its tall peak at about the same
position for either primary set, revealing a wavelength at which the test light acts strongly. The
primaries could perhaps be set to those wavelengths, permitting a matching experiment at
minimum power. Thornton developed this idea in detail10. 

Table 1. Observation concerning peaks of the red cmf in Fig. 2. The exact locations of the
peaks depend on the green and blue primary wavelengths as well as the red ones. Peak power
is expressed as a multiple of the power in the test wavelength.

scientist red primary 8 peak power 8 of peak

Wright 650 nm 3.6 602 nm

Guild 629 1.5 604

Moment of Reflection: Primary Colors
We have seen a puzzle in various forms, which might be called “the question of primary colors.”
Why is the peak wavelength of the red cmf in Fig. 1a so far from the red cone sensitivity peak in
Fig. 1b? In Fig. 3, why did the National Television System Committee, by its trial-and-error
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process9, put the red television phosphor so far from the red cone peak? In the traditional
presentation of additive color mixing, Fig. 4, why are the primaries red, green and blue, and not
something else? Why did Maxwell find in 1855 that the best primaries were “vermilion,
ultramarine, and emerald green?”11  If one is given the cone functions, Fig. 1b, it is easy to infer
the CMFs of Fig. 1a, with their more-separated red and green peaks. The riddle of primary colors
is this: by what process of cause and effect do the primary colors arise, especially the red
primary that is so far from the red cone peak? If color matching data can be converted from one
set of primaries to another, why are there in fact Prime Colors, a set of primaries that work best?

In Fig. 1a, for the 2-degree observer, the indicated primaries are the Prime Colors, because no
more than unit power of each primary is needed to match the test light.12 To make a color-
matching apparatus, a three-band light13,14, or a three-color video display8, it is a leap in the right
direction to set the working primaries close to these Prime Colors, and historically that is done.
One description of Prime Colors is that they act strongly in mixtures, and in fact “action in
mixtures” is already what color matching experiments measure, Fig. 1a. One goal now is to
make the concept of action in mixtures available for all color discussions, not only for mixtures
of narrow-band primaries.

Orthonormal Functions
Consider just red and green cones as a system. Color depends on comparison, so we want to
compare red and green cone sensitivities, to find the wavelengths at which they are the most
different. Let the cone functions, Fig. 1b, be called r, g, and b, and compute r!g. That is, we
want to compare the red and green signals, so with no further thought we subtract them. The
resulting opponent color function, Fig. 5, has positive and negative peaks at 605 nm and 520 nm,
about where prime colors are expected to fall. We are on the right track, but feel some remorse,
because the arbitrary scaling of r and g does affect the result. We then recall that whiteness
sensitivity, the familiar y6, is a sum of red and green sensitivities5:

y6 =  0.6372r + 0.3924g   . (2)

For later convenience, we can then normalize y6 and call that result T1. In fact, T1 = 0.11381y6,
but the important requirement is that +T1*T1, = 1. Then a red-green function can be found that is
orthogonal to the achromatic function. We find the function that is r minus the projection of r
onto T1:

*T2, = *r, ! *T1,+T1*r,   . (3)

Then normalize *T2,:

*T2, ² *T2,/+T2*T2,
1/2     . (4)

Recall that *f, is function f as a column vector and +g* is function g as a row vector, so that +g*f,
is the inner product of g and f, a single number.) As a check, multiply Eq. (3) on the left by +T1*
to obtain:

+T1*T2, = +T1*r, ! +T1*T1,+T1*r,   . (5)

Since *T1, was normalized, meaning +T1*T1, = 1, the RHS of Eq. (5) = 0, confirming that *T1,,
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*T2, are orthogonal, and in fact orthonormal.

So, in any case, *T1, and *T2, are two linear combinations of the red and green cone
sensitivities, orthogonal to one another. One is the achromatic function, proportional to y6, and
the other is a red-green opponent function, Fig. 6. For concreteness,

  , (6)[ ] [ ]ω ω1 2
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though the concepts are more important than the numbers. We can then say that *T2, represents
the other combination of *r, and *g,, orthogonal to the achromatic function, *T1,. The remaining
arbitrariness resides in the choice of *T1, as proportional to y6 for the first combination. Other
choices for the first function would lead to other possibilities for the orthogonal second function.
For the new pair of functions we can write:
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The square matrix expresses a rotation, and it would take only brief algebra to show that if the
old |T1,, |T2, (on the right) are orthonormal, so are the new |T1,, |T2, on the left.

Combining the functions of Fig. 6 into a single plot of T2(8) versus T1(8) gives the spectrum
locus shown in black in Fig. 7. Rotating by 2 = 81.8° gives a pair of functions in which one is
proportional to r(8) (but normalized), and the other is orthonormal to that red function, leading to
the locus shown in gray. The loci have the same shape, differing only by the rotation. In
summary, if we ask where the overlapping red and green functions are the most different, a
difference function r-g addresses that question but is somewhat arbitrary. Expressing red-green
sensitivity by a pair of orthonormal functions, then plotting one function against the other, leads
to a spectrum locus whose shape is invariant except for rotations and reflections. It is convenient
to use T1 and T2 as initially defined, so that T1(8) is the achromatic function.

To review, we sought the wavelengths where the red and green cones are the “most different.”
Refining that idea, we then found functions that are the most different—a pair of mutually
orthonormal functions. Plotting the orthonormal functions together—a so-called parametric
plot—gives a 2-dimensional shape. Choosing one of the orthonormal functions fixes the other,
within a minus sign. The remaining freedom is a rotation that does not alter the 2D shape.

The new functions are color matching functions like any of the examples in Fig. 1. A narrow-
band light of wavelength 8 and unit power maps to a vector [T1(8), T2(8)], a point on the locus.
The overlap of red and green sensitivities imposes a constraint which could be represented by
graphing the green cone function versus the red cone function, more or less what Cornsweet
does6. Fig. 7 shows the same constraint arising from overlap, but the orthonormal representation
spreads out the locus and provides us with meaningful axes. In Fig. 8, stimulus vectors add
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vectorially. The locus is not a gamut or boundary in the usual sense. When lights of unit power
add, the total vector (using 2 units of power) can extend beyond the locus.

Eq. (3) and (4) above express the method of Gram-Schmidt orthonormalization. Taking blue
cone sensitivity b(8) as the next independent starting function, Eq. (3) can be generalized to
create T3(8), equal to b(8) minus its projection onto each of T1(8), T2(8). Normalizing *T3, as in
Eq. (4) completes the calculation, and we have a set of 3 orthonormal color matching functions.
In short,

+Ti*Tj, = *ij    , (8)

where *ij is the Kronecker delta, = 1 if i = j, = 0 otherwise. These color matching functions,
graphed in Fig. 9, can be given intuitive descriptions:
1. T1 = achromatic function = 0.11381y6 .
2. T2 = red-green opponent function.
3. T3 = a sort of blue-yellow opponent function, but it has contributions from all three cones, and
as a practical matter is close to being just a blue cone function.

Let the 3 functions be written as columns of a matrix S,

S = [|T1, |T2, |T3,]   . (9)

(The ket notation, |,, makes explicit that the functions of wavelength are column vectors.) Then
the tristimulus vector V of a light with spectral distribution L is

V =  = ST |L,     . (10)
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The elements of V could also be written .( ) ( )v Lj j= ∑ω λ λ
λ

Now consider a narrow-band light with variable wavelength and a constant one watt of optical
power. When its wavelength is 8, the tristimulus vector is [T1(8) T2(8) T3(8)]T. Varying 8 then
generates a curve in 3-space. (Superscript T denotes transpose.) Fig. 10 shows a static view of a
graph that was made in color and 3D with the help of VRML, the Virtual Reality Modeling
Language. The locus is the edge of the colored surface. Interactive 3D examples are on the
author’s web site. For all references to web pages, please see the list of Supplementary Materials
for Vectorial Color on http://www.jimworthey.com . The 3-dimensional shape is in fact Jozef
Cohen’s “locus of unit monochromats,”2 but found by different steps. Cohen showed that
orthonormal primaries lead to the locus of unit monochromats, and his approach via the
projection matrix R makes it clear that the shape is invariant.
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The red, green, and blue extreme points of the locus indicate three longest vectors at 604, 536,
and 445 nm, explaining why additive primaries usually fall at about those wavelengths. Thinking
in terms of 3-phosphor video, for instance, the role of the green phosphor is to pull mixtures
away from white and towards green, the red phosphor’s role is to pull mixtures towards red.
Within a certain power budget, the designer wants long vectors, and the listed wavelengths fill
the need. The exact wavelengths given are not ideal primaries for all purposes. For example, 604
nm is an orangish color, not very red. Moving the red primary to a slightly longer wavelength
gives a vector at a greater angle from white or green, a more saturated red. Moving the primary
to 610 or 620 nm imposes a small cost in power that would increase if the wavelength were
shifted further. The motivation for moving the primary beyond 604 nm can also be seen in Fig.
1a, where the red primary is in fact 603 nm. To the right of the red primary is a region where the
green cmf goes negative, meaning that green is added to the test light to desaturate it. Moving
the red primary to a longer wavelength makes it redder, reducing the amount of green
“desaturant” that is needed. The effect can be seen in the animated color matching functions on
the web site.

The all-too-familiar chromaticity (x, y) indicates the direction of tristimulus vectors, losing their
amplitude. Because the vector plot does not discard amplitude, the locus falls into the origin at
the short and long ends of the spectrum. Seen in three dimensions, the surface is interesting but
not intricately folded. Cohen called it “butterfly wings.”2 Since the T1 axis measures whiteness,
it is logical to think of the T2-T3 plane as the chromatic plane. Projecting a  tristimulus vector
into that plane loses only its whiteness component, so it is also a 2-dimensional alychne, or
lightless plane.15 Projecting the spectrum locus into the chromatic plane gives the boomerang
shape of Fig. 11. As a map of the chromatic component of stimuli, this graph serves a function
vaguely similar to that of a chromaticity diagram, but there is no line of purples connecting 400
nm to 700 nm. To make purples with practical technology, one would want to mix lights that
have the needed stimulus amplitude within a power budget. The dashed “line of practical
purples” indicates such practical mixtures, and the “line of practical blue-greens” shows other
hues that might better be made as mixtures rather than narrow-band lights. At this time, I am not
giving exact definitions for the dashed lines, but suggesting a general idea that can be followed
up as the need arises. If b and g are two vectors, then the constrained mixture sb + (1!s)g plots
along the straight line between them, so the dashed lines are the loci of unit power mixtures.
(Parameter s selects a point on the line.)

Relationship to Cohen’s Approach.
Jozef Cohen emphasized that any light can be represented by its fundamental metamer, defined
as the linear combination of color matching functions that is metameric to the light. If two or
more lights have the same tristimulus vector—meaning that they match for the standard
observer—then they have the same fundamental metamer. The light’s actual spectral
distribution, say L1(8), minus the fundamental metamer, is a metameric black, a nonzero function
whose tristimulus vector is [0 0 0]T. We shall now see that tristimulus vectors based on the
orthonormal color matching functions are proxies for the fundamental metamers of the same
lights.

Cohen would find the fundamental metamer by using the projection matrix R, which is
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appealing because R is invariant in the strongest possible sense. If any of the sets of cmfs in Fig.
1 a-d, or Fig. 9 are called f1, f2, f3, and A is a matrix whose columns are those vectors, A = [*f1,
*f2, *f3,], then

R = A[ATA]!1AT (11)

is the projection matrix and it is the same big array of numbers in every case2. It is one array for
the 2° observer and a different array for the 10° observer, for example, but otherwise it is a fixed
arrangement of constants. If *L, is the spectral distribution of a light, and *L*, is its fundamental
metamer, then

*L*, = R*L,   . (12)

The fundamental metamer can also be found as a linear combination of the orthonormal cmfs:

*L*, = c1|T1, + c2*T2, + c3*T3,  . (13)

Applying the usual methods for finding the coefficients cj (See Appendix D) we find,

cj = +Tj*L,  , (14)
leading to

*L*, = |T1,+T1*L, +*T2,+T2*L, +*T3,+T3*L,  . (15)

In other words, the coefficients in the so-called orthogonal function expansion of *L*,, Eq. (13), 
are the tristimulus values of L. [See Eq. (10).] The squared length of *L*, is +L**L*,. In Eq.
(15), multiply the RHS by its transpose, which gives 3 terms times 3 terms, then immediately
apply orthonormality, Eq. (8), +Ti*Tj, = *ij. The result is

+L**L*, = +T1*L,
2 + +T2*L,

2 + +T3*L,
2  . (16)

Therefore, the length of the fundamental metamer is the length of the tristimulus vector. For
example, if the wavelength domain is 360 to 830 nm with 1 nm steps, there is a sum of 471
terms on the left, and a sum of 3 terms on the right. But the sums, the squared lengths of the
vectors, are the same. Or if L1, L2 are 2 different lights, the inner product of fundamental
metamers equals that of the tristimulus vectors:

+L1**L2*, = [+T1*L1, + +T2*L1, + +T3*L1,]   . (17)
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Further, the direction cosines are the same for the fundamental metamers and for the tristimulus
vectors, and therefore the angular relationships are the same. Therefore, the locus of unit
monochromats and related vector diagrams are the same whether they are intended to portray
fundamental metamers or tristimulus vectors.
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Amplitude and Meaning.
Any tristimulus vector has meaning: it quantifies the stimulus based on the eye’s spectral
sensitivities. Using the orthonormal cmfs gives clearer meaning to tristimulus vector amplitude.
Referring to Eq. (15), the fundamental metamer, *L*,, is an approximation to the physical
stimulus *L,, and it is also that component of *L, to which color vision can respond. Consider 
|T1,+T1*L, as a component of *L*, . That is, we have a function |T1, scaled by the coefficient
+T1*L,. The component has a sum-squared value +T1*L,

2, which adds to the sum-squared values
of the other two components to give the sum-squared fundamental metamer, Eq. (16). Therefore,
the tristimulus values individually are scaled to the stimulus, and so is the tristimulus vector as a
whole. Adding the three components plus the fourth one, the metameric black, gives back the
physical stimulus *L,, and adding the sum-square values of the components plus that of the
metameric black gives the sum-squared value of the physical stimulus, +L*L,.

When tristimulus vectors are added vectorially, as in Fig. 8, an alert student might ask “How do
you know what scaling the retina applies in adding the components, what multiple of red-green
adds to achromatic?” The answer is, we don’t know. The vectors are scaled to the stimulus, and
vectorial color is about adding stimuli. Creating and adding stimuli is the goal of all color
technology, and vectorial color is about making better use of color matching data.

Fig. 12 illustrates the notion of component functions. The solid black line is a standardized
daylight, D65. The maroon dot-dash line is the fundamental metamer of D65, which can be
called D65*. The green, red, and blue lines are the T1, T2, and T3 components which add up to
the fundamental metamer. Finally, the gray dashed line is the metameric black, b = D65!D65*.
So, D65 is the sum of 4 components, and also the sum-square of D65 is the sum of the sum-
squared values of the 4 components. The result that the sum-square of a function, in this case a
light, equals the totaled sum-squares of the components, works only for orthogonal components.
In this case, if we call the tristimulus values cj as in Eq. (12), then

+D65*D65, = + +b*b,   . (18)c
j

j

2

1

3

=
∑

The explicit summation in Eq. (18) is a version of the matrix product in Eq. (17). Eq. (18) is a
specialized version of Parseval’s theorem.

Wavelengths of Strong Action
In the introduction and development above, reference is made to primary colors, colors that act
strongly in mixtures, and “longest vectors,” concepts that are not completely synonymous. The
idea that certain colors act strongly in mixtures can be traced to MacAdam16, and to articles of
William A. Thornton in the 1970s13,14,17. The idea did not at first lead to a precise definition, but
various numerical experiments gave consistent results, showing that wavelengths near 450, 540
and 610 nm act strongly in mixtures. Some initial uncertainty in the wavelengths of strong action
did not impair the practical importance of the idea. Thornton later coined the term Prime Colors
for the three wavelengths, and ultimately defined the Prime Colors as the least-power primaries
for a color matching experiment. The primaries in Fig. 1a are the Prime Colors for the 2°
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observer; the primary wavelengths coincide with the peaks of the color matching functions. At
those wavelengths, the unit-power test light is matched by unit power of one primary.

Thinking of vectorial color and the locus of unit monochromats, Fig. 10, we can ask which
wavelengths give a local maximum in radius from the origin. The question can be answered in 3
dimensions by considering the orthonormal cmfs as vector components, and finding the vector
length, then the peaks. Alternatively, one can compute Matrix R and then the vector length is the
square root of the diagonal of Matrix R,1,2 which again is vector length as a function of
wavelength, from which the peaks are found. It is also interesting to seek the peaks of radius in
the two-dimensional chromatic plane, Fig. 11. Table 2 shows results of such calculations.

Table 2: Wavelengths of Strong Action in Mixtures.

2° Observer

Longest vectors in 3D are at: 445 nm 536 604

Longest vectors in 2D are at: 445 525 608

Prime colors = least power primaries = 446 538 603

10° Observer

Longest vectors in 3D are at: 445 535 600

Longest vectors in 2D are at: 445 521 606

Prime colors = least power primaries = 445 536 600

While the “longest vector” wavelengths come from simple manipulations with the orthonormal
functions, the prime colors are those narrow-band primaries that will give a color-matching
experiment at the lowest optical power12.

Color Rendering
Most everyday objects do not emit light, so their tristimulus vectors result from a combination of
a light source’s spectral power distribution (SPD), the object’s reflectance, and a set of color-
matching functions. For example,

Vi =   , (19)
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ω
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where L is the light, si is the spectral reflectance of one surface and Vi is that surface’s tristimulus
vector. It is realistic to assume a single light L, but numerous surfaces si. The light L, and the
cmfs Tj , apply to all objects. If one light is substituted for another, L1÷L2, the color stimuli Vi in
general will change. The problem of Color Rendering is to describe the systematic effects of the
change L1÷L2, based on facts about color matching, lights, and objects. A vectorial approach
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cuts through the seeming complexity.

First consider Eq. (19) and the single light L. The three groupings +Tj L*, the object color
matching functions, are the same across all surfaces. Now think about this a little further,
referring to Figures 10 and 11, and if possible to a VRML 3D drawing of the locus of unit
monochromats. Table 2 reminds us of the strongly acting wavelengths, and the figures give a
sense that the regions of strongest action are well-defined. If two narrow wavelength regions
dominate the creation of red and green stimuli, then the power levels in those bands will be more
important than other details of the light’s spectrum L or the reflectances si.

It was noted above that the “locus of unit monochromats” is the locus of fundamental metamers
of narrow-band lights, or the locus of tristimulus vectors. Yet another interpretation is that it is
the eye’s vectorial sensitivity as a function of wavelength. To call it “vectorial sensitivity”
emphasizes that there is a single independent variable, namely wavelength, but the response is
vectorial, having a direction and amplitude in color space. (To say “the eye’s sensitivity” is an
imprecise but hopefully intuitive reference to the stimulus calculation.) Rather than discuss the
groupings +Ti L* as three row matrices, consider a column vector evaluated at a specific
wavelength 8, scaled by the variable L(8):

L(8) = (vectorial sensitivity at 8)×L(8). (20)
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( )
( )
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ω λ
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This product is a function of wavelength, a vector-valued function that could be graphed in three
dimensions. Rather than make that graph, we jump ahead to another step. (Real calculations can
use matrices, but conceptually Eq. (20) involves a 3-vector times a scalar, both evaluated at a
particular wavelength.)

In Fig. 13, the SPDs of two white lights are plotted.  The two lights have the same tristimulus
vector, in the orthonormal system or in XYZ for that matter. (Yes, a person could say that “the
lights have equal illuminance and chromaticity,” but let’s think more in vector terms.) One is a
light of poor color rendering, high pressure mercury vapor. The other is JMW daylight,4 adjusted
to make its tristimulus vector equal that of the mercury light. (The computed daylight is a little
outside the stated domain of the JMW model.) The vertical dashed lines divide wavelength into
10 nm bands, except for a few wider bands at the ends of the spectrum. In most cases, the middle
of the band is a round-number wavelength.

For each 1-nm step in 8, Eq. (20) gives a small stimulus vector, and these can be added
vectorially within each wavelength band. The sum of those vectors is the tristimulus vector of
the light, and it is now interesting to add them graphically, Fig. 14. The simulated daylight gives
the smoothly arcing chain of arrows. Mixed long and short arrows distinguish the chain for the
mercury-vapor light, with the long components showing the wavelength bands where that light
radiates much of its power. The two chains end at the same point by design. A chain of three
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components, somewhat arbitrarily colored gray, red, and blue, denotes the tristimulus vector of
either light, broken into its orthogonal components. The red-green component is positive, but
approximately zero.

Although the two lights have the same total stimulus vector, the mercury light takes a shortcut to
the final point, while daylight swings in the green direction, then back in the red direction. Now
imagine a strongly chromatic object, a red apple for example. To express its redness, it absorbs
blue, green and yellow, but reflects red. It selects just the reddest vectorial components from the
light, and attenuates other components. If we would say “it selects the red wavelengths,” that
would leave out colorimetry. But if we say that the apple selects the red vectorial components,
that statement includes colorimetry. The mercury light has minimal red and green components,
as shown by its failure to swing toward green and back toward red on the way to white.

Discussions of color rendering are often burdened by hidden assumptions, leaving us to infer
what people are thinking. All would acknowledge that a light’s tristimulus vector can be found,
the three numbers plotted as gray, red, and blue. Then people seem to assume that the
information from simple colorimetry has been used up. The method just developed, based on
narrow bands and vectorial addition, shows the sameness of the two lights, that they give the
same total stimulus vectors. Within the same presentation, colorimetry applied to narrow bands
shows how the lights differ: the mercury vapor light lacks red and it lacks green. To relate the
vectorial graphs to vision of colored objects, one must make the popular assumption that object
reflectances are spectrally smooth, so that the 10-nm steps do not conceal an intricate interaction
between the light’s spectrum and the reflectance. The graphs could be drawn with 1-nm jumps,
and the computer programming would be easier, but there would be too many arrowheads. In
any case, the vector sums are not a rigid “method” to be used blindly, but an explanation of color
rendering in terms of basic science.

Moment of Reflection. What is a vectorial method for colorimetry? Why have we not seen
anything like the addition of stimulus vectors in Fig. 14? One may recall how vectors are used in
basic physics or engineering. Vectors may be added, but a vector may also be decomposed into
components. The numerical work is simple, but there is not a single “vector method” for the
student to memorize. Vector operations are used as appropriate, relating what’s known to what
isn’t. A vectorial treatment of color stimuli exploits the linearity of color
matching—Grassmann’s laws. We routinely add vectors (X, Y, Z), but there are problems:
1.) The functions  x6, y6, z6 are not orthogonal. Stimuli which plot at right angles have fundamental
metamers that are not orthogonal. Angles between stimuli in XYZ space are arbitrary, and in fact
vector directions are arbitrarily squeezed together. (The overlap of cone sensitivities brings
stimuli together, as modeled by the locus of unit monochromats. The XYZ system applies a
further arbitrary squeeze.)
2.) Component amplitudes X, Y, and Z are arbitrarily scaled.
3.) The XYZ axes have a murky relationship to the intuitive color concepts of red, green, and
blue.
4.) By tradition, we rush to calculate and graph (x, y), which is not a vector.
The orthonormal basis solves these problems, allowing and encouraging us to work with
stimulus vectors.
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Discussion
Working-class summary. An alert reader may ask, “So, you are selling a new set of color
matching functions. At one point you seek the wavelengths where receptor sensitivities are the
‘most different,’ and that is interesting. But in the end, what do you have that is new?” If we
consider x6, y6, z6, Fig. 1c, as the “old” functions, then T1 is a multiple of y6, so it is not new. The
third orthonormal function, T3, is really a blue function with a small extra variation, therefore it
is little different from the old z6, Fig. 15. So, 2/3 of the “new” system is similar to the old system.
The remaining old function is x6, an arbitrary magenta primary. The orthonormal system replaces
x6 with the red-green opponent function, T2, allowing the axes to have intuitive meanings,
namely white, red or green, and blue or yellow. Fig. 15 also compares x6 to T2. The new system
is an opponent-color scheme whose greatest benefit is to resolve the overlapping red and green
cones into functions that are more independent, and indeed orthogonal. Only a few narrow-band
stimuli will actually plot in the yellow (minus blue) direction, but the range of possibilities from
yellow through shades of white to blue is nicely spread out in the v1-v3 plane. Any set of color-
matching functions can map stimuli to vectors. Thanks to orthonormality, the new CMFs spread
out the vectors as much as possible.
Locus of Unit Monochromats. Jozef Cohen started with Wyszecki’s idea, to break any SPD
into a metameric black, orthogonal to all three CMFs, and the fundamental metamer, which is a
linear combination of the CMFs.1 A light and all its metamers share one fundamental metamer,
which is a non-arbitrary proxy for the group. Although the fundamental metamers are functions
of wavelength, 471-vectors perhaps, they map to 3-vectors. Each unit-power narrow-band light,
or “monochromat” in Cohen’s usage, thus maps to a point on the Locus of Unit Monochromats.2

The reference to “unit power” calls attention to the vector lengths: wavelength governs direction
and amplitude. The too-familiar chromaticity (x, y) by itself quantifies direction but loses
amplitude. Choosing the orthonormal functions also establishes axes, and it was found above
that a three-component stimulus vector in the orthonormal system has the same direction and
amplitude as the related fundamental metamer. Vector amplitude has the meaning of “strength of
action in mixtures,” a concept that is near the surface in color-matching experiments, but was
particularly called to our attention by Thornton13 (as well as MacAdam16).
Vectorial color. In Fig. 14, the vector chain gray-red-blue symbolizes the familiar operation in
which three sums over the visible spectrum give the components of a tristimulus vector. That’s
very well, but summing every time over the whole spectrum loses all differences between
metameric lights. The other chains in the figure come from rearranging the sum: choose a
wavelength band, collect the terms for that band from each larger sum, treat three partial sums as
a vector. The vector then has a direction in color space and an amplitude; from the abstraction of
“wavelength bands” comes something more meaningful: stimulus vectors, which can be added
and visualized as vectors.
Cause and effect. The best cause-and-effect reasoning is at work when a phenomenon is
described by simple laws, especially linear laws like F=ma and methods that assume linearity,
such as vectors. One then computes “the answer” and words such as “effect” are not used. The
facts of color vision present themselves in a certain way, as functions of wavelength, Fig. 1.
Linearity is implicit in any calculation when we compute (SPD)×(sensitivity) at each
wavelength, then add those contributions. The XYZ formulas exploit linearity to predict
matching lights or paint chips, but the arbitrariness of X, Y, Z deters the use of vector diagrams.
Losing vectors means losing cause and effect. Consider the problem of color rendering. Where
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does the problem arise, at the linear stage or later? Fig. 14 confirms that the problem involves
systematic differences between lights, and arises in the linear stage where cause and effect can
be made clear. The traditional color rendering method is full of arbitrary elements such as the 8
color chips18, but its problems go deeper. It is based on an assumption that the problem is
hopelessly complex: color shifts might be random or might be systematic; maybe the object
colors are important; maybe nonlinearity of perception is important. We don’t know and it’s
beyond hope that we could find out, so the method covers all possibilities. The XYZ system
creates low expectations by discouraging the discussion of linear events.
Terminology. In Fig. 1b, we see the great overlap of the red and green cone sensitivities, and the
lesser overlap of blue with green or red. Adding and subtracting such functions gives the
surprising variety seen in Fig. 1 and Fig. 9. Overlapping sensitivities make possible the gradual
variation of hues that we experience, even with narrow-band lights. College professors, finding
their students confused about hue variation from three receptors, and other subtleties, often call
the receptors long, middle, and short. I take a different view. The names red, green, and blue
appeal to intuition at any educational level. The complexity of color vision arises because of
overlap, a concrete fact that can be discussed and taught to students6. The orthonormal basis
deals with overlap by use of an opponent-color scheme, leading to the Locus of Unit
Monochromats, an intuitive embodiment of trichromatic theory. The orthonormal basis is not a
physiological model, but it offers a rational color space in which color science concepts such as
cone sensitivities, or Guth’s functions, Fig. 1d, can be represented by vectors21.
Lighting. Lighting books begin with discussions of luminous flux, treating light as a liquid and
tossing aside the roles that optics and color play in making a light useful. Eschewing even the
1931 color-vision observer, they base their discussion on the one-dimensional 1924 observer: the
y6 function alone. Summarizing Cohen’s and Thornton’s ideas as evolved in this article, we could
almost say that white lights need three liquids—power in three regions of the spectrum that
support vision of colored objects. Thornton invented names for them: rubinosity, verdinosity and
bluminosity13. If the light supplies less than a normal dose of power in the red and green, color
contrasts are diminished. Apart from color, the overriding optical issue is the light’s area or
luminance19. Area and luminance must vary inversely for a given luminous flux. Optics teaches
that luminance can diminish but not increase; no “optical funnel” can focus light from a
fluorescent tube into a narrow spotlight beam. No large-area source can give tiny highlights.
Chromaticity. A version of chromaticity could be defined for the orthonormal space. The
vectors comprising the locus of unit monochromats would be projected outward to meet a certain
plane, creating a spectrum locus that maps direction but not vector amplitude. Other stimulus
vectors could be projected to that plane, again losing their amplitude. The task of defining such a
diagram is left for the future. For now, we have an opportunity to forget chromaticity and study
vectorial color.
Math. The orthonormal basis resembles prior opponent color models, but is not the same. One
may ask how the orthonormal system, relying heavily on mathematical ideas, can presume to
supersede a physiological model based on “real data.” A two-part answer can be given:
1. A physiological model and the orthonormal basis are answers to different questions. There is
no need for them to be the same.
2. Choosing an orthonormal set of color matching functions allows perpendicular stimulus
vectors to represent independent variations of the stimulus, conforming to the usual notion of
vectors. The invariant locus of unit monochromats emerges, revealing the strong-acting red,
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green and blue Prime Colors and pointing the way toward opponent colors.
Critical tests. When a version of vectorial color was presented orally20, an audience member
asked what would be a critical test of the theory. The answer I gave then was “television
phosphors.” A vectorial picture (Figs. 10, 11 and 14) shows why additive primaries are red,
green, and blue (Figs. 1a, 3 and 4). Since the orthonormal functions are a transform of the CIE’s
2-degree observer functions, and predict the same matches, a critical test must be something
beyond a single match. See Appendix A.

The companion article21 works out other key applications. One would like a camera to see colors
as a person does. To that end, the camera needs 3 spectral sensitivities that are linear
combinations of those for the human22-24. Clarity is gained when we see that the camera has its
own invariant LUM, which should match or resemble that of the eye. The “fit first method” uses
projection matrix R in a short algorithm to compare the two LUMs21,22. Cohen’s algebra and
logic are used explicitly. Dichromatic observers have flat LUMs, giving an invariant graphical
picture for each type. Thus trichromats and dichromats, as well as cameras, can be described in a
consistent way.

Historical development. This article shows that expressing the facts of color matching in
orthonormalized opponent functions yields benefits for the understanding of color. Readers may
ask how such an idea was developed. The answer is very much in the open literature. Cohen
studied dependency of spectral reflectances25, which led him to think about dependency of color
matching functions, and ultimately about the projection matrix2. Thornton started out with
engineering calculations to improve fluorescent lamps13,14, which led him to the Prime Colors,
which he then studied through many published articles10. Cornsweet showed the role of overlap
and emphasized discussing color without the CIE’s formulas6. Michael H. Brill contributed
theorems and collaborations. Sherman Lee Guth created a simple opponent model5. I began by
combining Thornton’s and Guth’s ideas3,18. I found uses for opponent colors as a calculation
tool29-31. In an article on color rendering, I sketched the outlines of a relationship of Prime
Colors, opponent colors, and Matrix R18. In the next article I used orthonormal opponent
functions, but only as a tool, a middle step3. The final sentences of that article reveal a last-
minute discovery: that Matrix R is the same as a unity operator made from an orthonormal
basis3. See Appendix D below.  After that insight, some work with computer graphics was
important in moving from the abstract idea of orthonormal color matching functions to a better
understanding of practical benefits.

In 1998 I was contemplating the work that became Reference 3. Thornton suggested that I not
use Guth’s 1980 model directly, but make a version consistent with one of the CIE observers. I
have followed that advice since and now it blossoms into a larger idea. Figure 1, for example,
shows CMFs that are linear transformations of each other, but have differing interpretations.
Even Fig. 2 shows pseudo-historical graphs, similar to the Wright and Guild data, but based on
the 2° observer. The use of consistent functions is not new, and indeed it is part of the 1980 Guth
model. Still, basing all development on the CIE’s smooth functions helps to separate
measurement issues from algebraic ones. The opponent-orthonormal schema can then
incorporate revised data, Appendix C, or even be applied to alternate systems such as cameras.22
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Other precedents exist. In 1855, Maxwell experimented with additive primaries of “vermilion,
ultramarine, and emerald green” and inferred overlapping sensitivities: “... every ray of the
spectrum is capable of producing all three pure sensations, though in different degrees.”11 He
observed that colors map to points in 3-space, but immediately offered a 2-dimensional
representation. Pilgrim devised additive color-mixing experiments using spectral lights. Then in
1901, combining ideas from Maxwell and Helmholtz, and 1892 data from König and Dieterici, he
represented colors as vectors in a 3-space, leading to a “spectral color trace” resembling Cohen’s
locus of unit monochromats.26 MacAdam created an orthonormal basis from the CIE 1931
observer15,27, but found only a narrow use for the functions7. Buchsbaum and Gottschalk sought
the transformation of cone primaries that would be optimum for data transmission–in the optic
nerve for example.28 Their method used its own refined data and assumptions, but led to 3
functions similar to S above: achromatic, red-green, and blue-yellow.28

In order to use the orthonormal basis, it is not necessary to review all the historical development.
On the contrary, a stimulus vector is calculated from the orthonormal CMFs as from any other set
of color matching functions, Eq. (10). One can then discover the benefit of the orthonormal and
vectorial methods by working with them21. Brill, Cohen, Guth, Thornton and others (alphabetical
order!) have made important contributions to Color Science. Their childhood homes should
become shrines visited by schoolchildren. While we wait for that to happen, their work is
embodied in the orthonormal opponent color matching functions, which can be used with
minimal reference to history.

Conclusions

Sets of CMFs can be equivalent for color matching, but look different, and have other meanings,
such as cone sensitivities or opponent functions, Fig. 1. This insight is part of our legacy from the
20th century and earlier. But which color matching functions are best for graphing color vectors?
There is no legacy answer, but you can take Guth’s 1980 functions, and orthonormalize them, and
that will work. That’s the orthonormal basis, Fig. 9, which leads to axes with intuitive meanings
and vectors that are nicely spread out in color space. Deeper meaning comes from Jozef Cohen’s
work1,2.

In its basic use, projection matrix R is a curve-fitting trick. In Fig. 15, for example, x6 is shown at
normal scale, then the black dashed line is the linear combination of T3 that is a best fit. Of
course, the “linear combination” of a single vector is a scalar multiple of it. Eq. (D14) applies and
reduces to

R  = *T3,+T3*    . (21)
If the re-scaled T3 is called w3, then

w3 = R*x6, = *T3,+T3*x6,   . (22)
The coefficient of *T3, is +T3*x6,, which is in fact the coefficient in a 1-term orthonormal function
expansion. See Appendix D, especially Eq. (D4). Curve-fitting relates to orthonormal functions
which can relate to other topics. An engineering student can study sine waves a long time before
he learns that the Fourier series gives a least-squares best fit to a periodic function. Even then, the
fit is often not about fitting noisy data. In the case of color, the fundamental metamer is a fit to
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data based on the eye’s trichromatic sensitivity. If there is a suite of metamers, as Cohen would
say, a set of lights that match, then the fundamental metamer is the same for all of them, but
differs from each light by a different metameric black.  Alternate ways of looking at the
fundamental metamer collide in Eq. (D5),

|L*, = |T1,+T1|L, + *T2,+T2*L, + |T3,+T3|L,   . (D5)

|L*, is a function such as the dash-dot curve in Fig. 12. The vectors |Tj, are fixed functions, the
orthonormal basis. The sum on the right is a 3-term expansion in the basis. The inner products
+Tj|L, are the coefficients, but they are also the components of the light’s tristimulus vector V. In
other words, V specifies the fundamental metamer, and vector diagrams such as Fig. 14 concern
the same color space that Cohen wrote about. At the same time, Appendix D, especially Eq.
(D15), makes it clear that Eq. (D5) is equivalent to |L*, = R*L, . If L is a narrow-band light so
that vector *L, has one non-zero element, then |L*, is one of the columns of R. Varying *L,
through the spectrum at unit power generates the locus of unit monochromats. Since R is
invariant, the LUM also is invariant under a transformation of a set of CMFs.

The vectorial composition of a white light, Fig. 14, shows why engineers love formulas: not just
to get a few numbers, but to organize the work. In a design calculation, constraints are applied
and parts interact.  The pieces of a bridge have weight, they push and pull on each other, and the
designer models many details together—hopefully—in a consistent calculation. Historically, the
discussion of lighting has gotten off on the wrong foot, putting a number on luminous flux, then
discussing other issues in a haphazard way. The facts of light source spectra, objects, and color
mixing are known or measurable. Vectorial composition of white lights puts the constraints and
the variation into one picture.

Appendix A, How Different Sets of CMFs Can Predict the Same Matches
If one set of color matching functions (CMFs) is known, other sets can be derived from it that
predict the same matches. Suppose that the starting set of CMFs form the 3 columns of a matrix
Q0, perhaps representing the data from a color matching experiment:

Q0 = [|r, |g, |b,]  . (A1)
Then two spectral power distributions, expressed as column vectors |L1, and |L2,, are expected to
match if

Q0
T |L1, = Q0

T |L2,  . (A2)
Superscript T means matrix transpose. Eq. (A2) is an equality of tristimulus vectors. Now define
a transformed set of CMFs Q1:

Q1  = Q0X  , (A3)
where X is an invertible (non-singular) 3×3 matrix. (X is a transform, not related to the XYZ
system.) Transposing Eq. (A3) gives

Q1
T  = XTQ0

T  . (A4)

Let Eq. (A2) be left-multiplied on both sides by XT,
XTQ0

T|L1, = XTQ0
T|L2,, (A5)

then apply Eq. (A4) to conclude that
Q1

T|L1,=Q1
T|L2,  . (A6)

Since X is invertible, multiplying Eq. (A6) by (XT)!1 gives back Eq. (A2), all steps are reversible
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and Eqs. (A2) and (A6) are equivalent.

Appendix B, Relationship to Guth’s 1980 Model.
If one were to poll Sherman Lee Guth and his former students, one might find that the concepts I
take from his work differ from the ideas he had in mind in 1980.5 In fact, it has been a theme of
my career to apply Guth’s 1980 model as a mathematical tool, in ways that he did not intend.3,29-32

Opponent concepts prove valuable for understanding the linear stage of color vision, the stage of
transduction and of color matching, prior to the stage that Guth intended to study. In this article, I
stray especially far from his vision, adding and subtracting his functions to make orthonormal
ones.

Emphasizing the evolution of thought, rather than algebra, the notion of orthonormalizing Guth’s
functions arises like this:
1. Guth conformed his opponent functions to the familiar facts of color matching by starting with
2° observer functions,  x6, y6, z6. He used a “slightly modified” 2° observer, but I use the official
CIE 1931 functions with his formulas. In two steps, he gave formulas for cone sensitivities (from
Smith and Pokorny),33 then subtracted the cone signals to give opponent signals. When we
recognize that receptor-sensitivity overlap is a central theme of colorimetry, then Guth’s 1980
model5 is charming and simple because:

a. The achromatic function, a multiple of y6, is a sum of the red and green signals, with
certain coefficients. It has no blue input.

b. The red-green signal is red minus green only, with specified coefficients, no blue input.
Thus, the red-green signal involves only the most-overlapping pair of cones.

c. The blue-yellow signal is blue minus red only, with coefficients, no green input. This
signal involves only the least-overlapping pair of cones.
2. Guth normally discussed his functions in the sequence achromatic, red-green, and blue-yellow
(symbols a6, t6, d6). One may notice that:

a. Opponent functions such as Guth’s look as if they might be orthogonal functions.
b. They are sequenced in a way that would be natural if they were orthogonal, namely the

all-positive function first, then two functions that cross the abscissa and go negative over part of
the wavelength domain.

c. The functions are the two highly overlapping cones (red and green) added; then the
same cones subtracted; then the two least overlapping cones (blue and red) subtracted.
3. So, we are perhaps disappointed that Guth’s functions are not orthogonal.

a. However, it is logical to apply the Gram-Schmidt procedure, keeping the functions in
the order achromatic, red-green, blue-yellow.

b. When Gram-Schmidt is applied in this way, the achromatic function is renormalized,
but otherwise unchanged. The achromatic function was a re-scaled y6, and it is still a re-scaled y6
in our orthonormal set.

c. The red-green function is changed, to make it orthogonal to y6, but because of the step-
by-step nature of the Gram-Schmidt procedure, the orthogonalized red-green function still has the
Guth-like property of no blue input. It is still red minus green, but the exact coefficients are new.

d. Finally, the blue-yellow function in the orthonormal set is the least Guth-like, with
contributions from all 3 cones.

In the main text, the orthonormal set was found, in effect, by starting with the set {y6, red cones,
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blue cones} and applying Gram-Schmidt. The resulting functions are the same, with the same
connection to Guth’s 1980 model.

Another resource. Although I worked from Guth’s 1980 model, there is another important
source for the idea that the first two of the orthonormal functions, T1 and T2, should depend only
the highly overlapping red and green sensitivities. Buchsbaum and Gottschalk28 assumed human
cones and a certain constraint on stimuli, and derived a set of orthonormal functions representing
decorrelated signals. Their result is that the first two functions are a red+green, approximating y6,
and red!green (looks like T2), with tiny blue inputs. Ref. 28 does cite Ref. 5. This article’s
orthonormal basis is suited to many uses. Ref. 28 supports its use in such applications as image
compression.

Appendix C, Smooth Cone Sensitivity Functions and Other Calculations.
In the body of this article, any “achromatic sensitivity” is a multiple of the CIE’s y6 for the

1931 2° Observer, and any “cone sensitivity” is a linear combination of  x6, y6, and z6. One reason
for using the CIE functions in this way is that they are (unofficially) available as smoothed
functions, tabulated at 1-nm wavelength steps.4,34 One may ask, how much difference would it
make to have a different starting point, such as the more recent Stockman and Sharpe receptor
sensitivities? In fact, it makes little difference, but it will be instructive to work out the
comparison.

Let the Stockman and Sharpe cone primaries34-36 be written as column vectors, |rSS,, |gSS,,
|bSS,. Now, using the assumption that achromatic sensitivity involves only red and green cones, let
A = [|rSS, |gSS,] and construct a projection matrix Rrg for the 2-dimensional space of these
receptors:

Rrg = A(ATA)!1AT  . (C1)

If |y6, is the usual achromatic function, and |y6rg, is to be the best fit to |y6, in the 2-dimensional
space, then

|y6rg, = Rrg |y6,   . (C2)

Now recall the scheme of the smooth orthonormal functions S. That is, the first function was
proportional to |y6,, the second function was a different linear combination of red and green cones,
orthogonal to |y6,, and the third function involved all 3 cones. If we form a matrix [|y6rg, |rSS, |bSS,]
and perform Gram-Schmidt orthonormalization on the columns of this matrix in sequence, the
result will be a new orthonormal basis comprising linear combinations of the Stockman and
Sharpe primaries:

[|y6rg, |rSS, |bSS,] ÷ by Gram Schmidt ÷ SSS  , (C3)

where SSS is the new orthonormal set. Figure C1 shows the fit of the less smooth basis to the
smooth one. At worst, one can say that the smooth functions differ little from more exacting
modern ones. At best, the smoother functions convey the “big story” better. In Fig. C1, the
smoother functions based on the interpolated 2° Observer are shown as gray dashed lines, while
those based on the Stockman and Sharpe primaries are the thinner black lines.
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Appendix D, Fun with Orthonormal Functions

This appendix is really about notation and convenient calculation. The ideas are the well-known
facts of generalized Fourier series. Suppose that {|T1,, *T2,, *T3,} is a set of functions that are
orthonormal:

+Ti*Tj, = *ij    . (8)

To be concrete we envision a set of 3 functions of wavelength, but there could be any number of
functions over any domain. Now consider a function *L,, which could be the spectral power
distribution L(8) of a light. We want to approximate *L, by a linear combination of the functions
|Tj,:

*L, . c1|T1, + c2*T2, + c3*T3,  , (D1)

where the cj are constant coefficients. We seek a formula for c1. Multiply Eq. (D1) on the left by
+T1*:

+T1*L, . c1 +T1|T1, + c2 +T1*T2, + c3 +T1*T3, . (D2)

By orthonormality, Eq. (8), +T1*T2, = +T1*T3, = 0, and +T1|T1, = 1. Then c1 = +T1*L,. In general,
cj = +Tj*L,  , (D3)

and then substituting Eq. (D3) into Eq. (D1) leads to

*L, . |T1,+T1*L, +*T2,+T2*L, +*T3,+T3*L,  . (D4)

By reasoning not reviewed here, the sum on the right in Eq. (D4) is the linear combination of |T1,,
*T2,, *T3, that is the least-squares best fit to *L,. That is also a description of the fundamental
metamer of *L,, denoted by *L*,. Therefore,

*L*, = |T1,+T1*L, +*T2,+T2*L, +*T3,+T3*L,  . (D5)

(Why is ‘.’ gone in Eq. (D5)? Because the fundamental metamer is the approximation.)
Factoring the RHS of Eq. (D5) yields

*L*, = (|T1,+T1* +*T2,+T2* +*T3,+T3*)*L,  , (D6)
or,

*L*, = *L,  . (D7)ω ωj
j

j
=
∑










1

3

The sum in parentheses is called a unity operator,  , and could have N terms if there were N
orthonormal vectors:
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 =    . (D8)ω ωj
j

N

j
=
∑
1

Comparing Eq. (D7) to Eq. (12) shows that the unity operator performs the same function as
projection matrix R, and suggests that it is3 Matrix R. Recall that |Tj, is a column matrix and +Tj*
is a row matrix, so |Ti,+Tj* is a large square matrix. The summation from j=1 to N is separate
from the matrix products, and indicates the sum of N large square matrices. So  is a large square
matrix like R; it is not yet proved that they are equal.

Postponing that proof, why do we need a new symbol and formula for R, Eq. (D8)? The unity
operator is not only an alternate formula for the projection matrix, it is a shorthand way to derive
equations like Eq. (D4) or (D5), which include explicit formulas for the coefficients, as in Eq.
(D3). Now letting N=3, we notice an alternate way of writing Eq. (D8):

 =    . (D9)[ ]ω ω ω
ω
ω
ω

1 2 3
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2

3

















In this case, the summation implicit in the matrix product is the one that was written explicitly in
Eq. (D8). It is natural to write the orthonormal set as the columns of a matrix S, that is

S = [|T1, *T2, *T3,]    . (D10)

Therefore
 = S ST. (D11)

Now if projection matrix R is based on color matching functions, it is the same for any
transformed set, so substitute A = S in Eq. (11):

R = S[STS]!1ST   . (D12)

But the grouping STS, because of orthonormality, is the 3×3 identity matrix:

STS = I3×3   , (D13)

whose inverse is also the identity matrix, therefore

R = SST   . (D14)

Comparing Eq. (D11) to Eq. (D14) confirms that R =  .

The key idea of this appendix is contained in Eq. (D4) or (D5), or in Eq. (D8) or (D9), which are
tools for deriving Eq. (D4) or (D5). Eq. (D3) is the explicit formula for the coefficients. If the
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summation notation of Eq. (D8) seems awkward, Eq. (D9) can be used to derive formulas. For
example, *L*, = *L,, then

*L*,  = *L,    . (D15)[ ]ω ω ω
ω
ω
ω

1 2 3
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3

















On the RHS, three matrices are multiplied. Formally multiplying the second and third matrices
gives

*L*,  =      . (D16)[ ]ω ω ω
ω
ω
ω

1 2 3
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2

3
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Formal multiplication in Eq. (D16) then gives Eq. (D5), expressing *L*, as a linear combination
of the orthonormal functions. Observe that STS = I3×3, Eq. (D13), but if the order of
multiplication is reversed, SST = R, Eq. (D14).

Moment of reflection. In teaching color to students, details can perhaps be offered in small
doses. For example, a basic idea is that much of colorimetry is about the overlap of red and green
sensitivities, suggested obliquely by Cornsweet6. The idea that the orthonormal CMFs and in turn
the tristimulus values have intuitive meanings could be presented by graphs and examples,
omitting some of the algebraic rationale. A parametric plot of the color matching functions S
gives the locus of unit monochromats, which comprises the tristimulus vectors of narrow-band
lights, and so forth. The steps along the way are not abstract; they have pictures and color words.
Teacher and student will see that the system has a certain natural logic, that it relates directly to
such practical matters as mixing colors, choosing video primaries, and so forth. In the end though,
one may ask what is the source of this intuitive clarity, what do the functions S and the
tristimulus vector V really mean? One answer is found above. For any light, the fundamental
metamer is well-defined; it is invariant. By definition, it is a linear combination of the functions
*Tj,, meaning a sum with certain coefficients. Eq. (D5) or (D16) shows that the coefficients are
the tristimulus values. For example, *T2, is the redness-or-greenness component of the
fundamental metamer, and +T2*L,, depending on sign, is the amount of that component. Other
fundamentals include the invariance of projection matrix R and of the Locus of Unit
Monochromats1,2.
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“Vectorial Color”
James A. Worthey, 2009

Figure Captions

Fig. 1. Four sets of color matching functions that are equivalent for matching. Set (a) are
idealized experimental data for the 2º observer, with narrow-band primaries at 603, 538, and 446
nm. Set (b) are cone sensitivities. Set (c) is the CIE 2º observer functions, x6, y6, z6. Set (d) are
Guth's 1980 opponent color functions, but normalized.

Fig. 2. Color matching functions, equivalent to the 2º observer. The solid curves are similar to
Wright's data, while the dashed curves are similar to Guild's.

Fig. 3. Chromaticity diagram, showing the cone sensitivity peaks, and the NTSC video
phosphors.

Fig. 4. A familiar diagram for additive color mixing.

Fig 5. Red cone sensitivity minus green cone sensitivity. The functions of Fig. 1(b) are subtracted,
without adjustment of amplitudes.

Fig. 6. Function T1 is the usual y-bar, but normalized. T2 then is red minus green, but with
amplitudes set to make the functions orthonormal.

Fig. 7. Combining the functions of Fig. 6 into a parametric plot gives the black shape, T2 vs T1.
Transforming by Eq. (7) with 2 = 81.8° gives the rotated shape shown in gray.

Fig. 8. The dichromatic spectrum locus is the same as in Fig. 7. Arrows show vectorial addition of
narrow-band stimuli at 550 nm and 590 nm. Circles show where vector length reaches a local
maximum.

Fig. 9. The orthonormal opponent CMFs, based on the 2º observer.

Fig. 10. The locus of unit monochromats, LUM. The locus is the edge of the indicated surface,
and is a parametric plot of the functions in Fig. 9. It is the same LUM as defined by Cohen, but
his preferred method would leave the curve floating in space, without specific axes.

Fig. 11. The projection of the LUM into the T2-T3 (chromatic) plane.

Fig. 12. The heavy black curve is D65. The dash-dot curve is the fundamental metamer of D65,
the total of the T1 (green), T2 (red) and T3 (blue) components. Subtracting the fundamental
metamer from D65 gives the metameric black (gray dashed).

Fig. 13. Two lights which have the same tristimulus vector. That is, they are metameric to the
2-degree observer. The solid curve is a high-pressure mercury light, while dot-dash indicates a
version of JMW daylight.
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Fig. 14. The 2 lights of Fig. 13 are now seen as vector sums, with the LUM as a backdrop. The
vector components of daylight make a smooth arc of thin arrows. The mercury light’s path, with
thicker arrows, takes a shortcut to the white point.

Fig. 15. The gray curves are two of the CIE functions: gray dashed = z6, gray solid = x6. The black
curves are two of the orthonormal functions: black dashed = T3, black solid = T2.

Fig. C1. Thin solid curves are the orthonormal basis, the same as Fig. 9. Grey dashes are an
orthonormal set based on Stockman and Sharpe cones.
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