Transform from Ω to Another Basis C

We know that alternate sets of color matching functions can exist that are linear transformations of one another. One may ask, given two such sets of functions, how to find the 3×3 matrix that converts the one to the other? The discussion below applies if one of the sets of CMFs is the orthonormal basis.

Suppose that Ω is the orthonormal basis, derived from the 2° observer. We recall then that Ω comprises 3 column vectors,

$$
\begin{equation*}
\Omega=\left[\left|\omega_{1}\right\rangle\left|\omega_{2}\right\rangle\left|\omega_{3}\right\rangle\right] . \tag{1}
\end{equation*}
$$

Suppose further that A is a different basis, also derived from the 2° observer. It's not important that the specific standard observer is used, but in any case, we know that the one set of functions is a linear transformation of the other set, which can be written as

$$
\begin{equation*}
A=\Omega T . \tag{2}
\end{equation*}
$$

Since each basis is represented by the 3 columns of a matrix, the transformation is written as square matrix T, which then post-multiplies Ω to give A.

The orthonormal property of Ω can be written in matrix form:

$$
\begin{equation*}
\Omega^{\mathrm{T}} \Omega=\mathrm{I}_{3 \times 3} . \tag{3}
\end{equation*}
$$

Of course, superscript T indicates matrix transpose, nothing to do with square matrix T.
We now wish to solve Eq. (2) for T. Left-multiply Eq. (2) by Ω^{T} to obtain

$$
\begin{equation*}
\Omega^{\mathrm{T}} A=\Omega^{\mathrm{T}} \Omega T . \tag{4}
\end{equation*}
$$

Note from Eq. (3) that $\Omega^{T} \Omega$ is the identity matrix, so it can be omitted in Eq. (4) and we find

$$
\begin{equation*}
T=\Omega^{\mathrm{T}} A \tag{5}
\end{equation*}
$$

the result that was sought.
Eq. (5) has practical application in computer work. It can happen that Ω and some A have been found from a starting point such as [x-bar y-bar z-bar] by some steps, but T is not known.

The derivation could jump from Eq. (2) to Eq. (5) with a few words of explanation, but here the assumptions and details have been explained.

Jim Worthey home page: http://www.jimworthey.com .

