Question: Why is "Matrix \mathbf{R} " important?

Significance of Matrix \mathbf{R}

Review: Consider a spectral power distribution $N(\lambda)$ as a stimulus to vision. A set of color matching functions (CMFs) form the columns of a matrix A.

$$
A=\left[\begin{array}{lll}
q_{1} & q_{2} & q_{3}
\end{array}\right]=\left[\begin{array}{ccc}
a_{11} & a_{12} & a_{13} \tag{1}\\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33} \\
\vdots & \vdots & \vdots
\end{array}\right] .
$$

Then the fundamental metamer N^{*} is the linear combination of the CMFs that is a least-squares best fit to N. Seeking a means to calculate N^{*}, Jozef Cohen found that $N^{*}=\mathbf{R} N$ when \mathbf{R} is given by

$$
\begin{equation*}
\mathbf{R}=A\left(A^{\prime} A\right)^{-1} A^{\prime} . \tag{2}
\end{equation*}
$$

Cohen derived Eq. (2) without knowing much of the mathematical context. At first he was pleased just to have an answer, a formula for the fundamental metamer. Later he learned that:

1. Matrix \mathbf{R} of Eq. (2) is known to mathematicians as a projection matrix.
2. To find the fundamental metamer, the specific linear combination of CMFs, other methods exist. The GramSchmidt process can be applied to the columns of A, creating an orthonormal basis. It is then rather easy to derive N^{*} in terms of the orthonormal functions. A person familiar with orthonormal functions may consider it easier to use them. [Depending on how the orthonormal basis is used, it may use less computer memory, but in 2007 that is no longer important.]

So Cohen at first saw projection matrix \mathbf{R} as a solution to one problem, finding the fundamental metamer of a light. Later, he saw that other methods could be used for that problem. But that is not the end of the story.

Locus of Unit Monochromats. It is easily proved that \mathbf{R} is invariant with respect to the basis used in A. (Please see http://www.jimworthey.com/qna/invariance of r.html .) For instance, if we choose to work with the CIE's 2° observer, it can be expressed as x, y, z, but also as cone functions, as an orthonormal basis, or as any other set of linear combinations of the initial functions. (The linear transformation must be reversible, involving a matrix whose inverse exists.) Then \mathbf{R} is invariant in the strongest possible sense; it is the same big array of numbers in all cases. Since \mathbf{R} is closely related to the locus of unit monochromats (LUM), the invariance of \mathbf{R} implies that the LUM is an invariant shape for each observer. A different LUM will apply for the 10° observer, and a very different one may apply if the "observer" is a color camera, but in each case the LUM is an invariant embodiment of color matching for that observer.

Suppose that one begins by avoiding Matrix \mathbf{R}, orthonormalizing the color matching functions, and then generating the LUM as a so-called parametric plot. That is, a narrow-band light of unit power and wavelength λ plots to a point in three-space $\left[\omega_{1}(\lambda), \omega_{2}(\lambda), \omega_{3}(\lambda)\right]$. Varying λ through the spectrum generates the LUM. However the orthonormal set is not unique. Others can be generated to embody the same observer. The invariance of \mathbf{R} makes it clear that the shape of the LUM is invariant. Other brief algebra shows that the orthonormal basis generates the same LUM as \mathbf{R} would create. Choosing a different orthonormal basis sets different axes, but does not alter the LUM's shape (except for a possible mirror inversion). Cohen liked to work directly from matrix \mathbf{R} and to envision the LUM as floating in space without preferred axes; that approach emphasizes the invariant shape.

So, in short, Matrix \mathbf{R} can serve as an important logical link in showing that the LUM is an invariant shape. Matrix
\mathbf{R} can be part of the conceptual framework, even if the LUM is drawn by a different method.
Curve Fitting. Going in another direction, the projection matrix \mathbf{R} is convenient for discussing practical calculations that may arise with color. A problem may be one that we think of as projecting functions into a subspace, but it may also be one that we think of as curve-fitting. If we have a function ϕ and we seek ϕ^{*}, which is the best fit to ϕ by a linear combination of any set of vectors A, then it is not necessary to set up and solve the leastsquares problem in a series of steps. Just re-word the problem to say that ϕ is to be projected into the subspace of vectors A. Then compute the matrix \mathbf{R} for the particular A, and write $\phi^{*}=\mathbf{R} \phi$. The concept of projecting ϕ into the column space of A is simple, and so is the computer calculation. In a matrix-oriented computer language, the formula for \mathbf{R} can be expressed as one or two lines of code, or as a short function.

Curve Fitting Example. Word for word, here is a curve fitting example taken from the poster for CIC 14, the Color Imaging Conference in 2006:
"The more evolved procedure can be called 'the fit first method.' The computer code looks like this:

```
Rcam = RCohen(rgbSens)
CamTemp = Rcam*OrthoBasis
GramSchmidt (CamTemp, CamOmega)
```

Here rgbSens is a matrix whose columns are the 3 camera sensor functions. Rcam is Cohen's projection matrix \mathbf{R} based on the camera functions. OrthoBasis is Ω, the 3 orthonormal vectors for human. CamTemp is then the best fit to OrthoBasis using a linear combination of the camera sensitivities. The columns of CamTemp may not be orthonormal, so Gram-Schmidt finds the orthonormal basis, CamOmega. That's the main result, and the camera's LUM is a parametric plot of the 3 columns of CamOmega."

The second line of the computer code does three curve fits! The short subroutines RCohen () and GramSchmidt () are available at http://www.jimworthey.com/omatrixcode.html .

Using matrix \mathbf{R} in combination with the orthonormal basis. As explained at length elsewhere,

1. A set of orthonormal opponent color matching functions, Ω, has many interesting applications.
2. If an orthonormal basis Ω has been calculated, then the formula for \mathbf{R} simplifies: $\mathbf{R}=\Omega \Omega^{\prime}$, where the prime symbol indicates matrix transpose.
3. While the formula $\mathbf{R}=\Omega \Omega^{\prime}$ can be used to compute the large numerical Matrix \mathbf{R}, it can also be used in brief derivations of useful formulas. For example, one might want to convert a tristimulus vector in the Ω system to a tristimulus vector in the XYZ system. The needed conversion matrix can be derived by starting with $\mathbf{R}=\Omega \Omega^{\prime}$.

Conclusions: When Ω is in use, \mathbf{R} is not needed to generate color vectors, such as those that trace the locus of unit monochromats, but \mathbf{R} may well be used for other best-fit problems that arise. The rows of Ω trace out the LUM, but the invariance of \mathbf{R} reassures us that the LUM is an invariant shape.

In other words, the orthonormal basis and vectorial color can at times be used with little reference to matrix \mathbf{R}. At other times, the projection matrix aids calculation or gives insight.
JAW

