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Linear transformations of color-matching data 
predict the same matches!

Traditional
x, y, z .

Fictitious but 
realistic color-
matching data.

Cones, red, 
green and blue.

GUTH’s 1980 
opponent model, 
normalized. 
Achromatic 
function is the 
same as y.

Legacy Understanding

Figure 1. <The only numbered fi gure!>
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How does a set of 3 functions predict color matches?
A set of color-matching functions, CMFs, can be thought of as column vectors, 
which become the columns of a matrix A.
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A can contain any of the sets of color-matching functions in Fig. 1.

(1)

4

The spectral power distribution of light L
1
 can be written as a column vector. It is 

then summarized by a tristimulus vector V,
                   V = AT L

1
      .                     (2)

Light L
1
 is a color match for Light L

2
 if 

                 AT L
1
 = AT L

2
      .                         (3)

If Eq. (3) holds for one set of CMFs shown above, then it will hold for the others. 
That much is in traditional sources such as WYSZECKI and STILES’s book. 

Moment of Refl ection
Now look back to the 4 graphs of Fig. 1. They are equivalent for color matching, 
but play other roles:
• The cone functions relate to adaptation and constancy.
• The color matching data give clues about choosing primaries for additive 

mixing (emphasized by BILL THORNTON).
• The opponent model fi ts the intuitive ideas that red and green are opposites, 

as are blue and yellow.
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Other Issues at the Stage of Linear Additivity

What’s missing is a good scheme for vectorial addition of colors. In his 1970 Book, TOM 
CORNSWEET emphasized vector addition to account for overlapping receptor sensitivities:

My method is inspired by CORNSWEET, but also by JOZEF COHEN.

6

JOZEF COHEN’s Innovations
Spectral refl ectance can be measured at hundreds of points across the visible domain, but 
for most objects it graphs as a smooth curve:
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green = Michael Vrhel's object #136 = green pepper
red = Vrhel's object #138 = peach skin -- red
dashed = Vrhel's object #139 = lemon skin
blue = Vrhel's object #167 = raincoat -- blue

4 Reflectances

The smoothness of object colors is an underlying fact for color constancy, object metam-
erism, and color rendering. In 1964, at the dawn of the computer age, JOZEF COHEN 
used principal components analysis to fi nd that a population of Munsell Colors could be 
modeled as a sum of 3 or 4 basis functions. [COHEN, JOZEF, “Dependency of the spectral refl ectance curves of the Munsell 
color chips,” Psychonom. Sci. 1, 369-370 (1964).]
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fuschia = MCC magenta (2.5RP 5/12)
teal = MCC cyan (5B 5/8)
maroon = 5YR 7/10
blue = 5PB 4/10

4 Munsell Colors
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Reflectance Basis of Munsell Papers,
Cohen 1964

The “Dependency” paper was little noted for 
20 years, but is now widely cited. The idea 
is referred to as a “linear model,” and is the 
basis for many studies with a statistical fl avor. 
Having used some linear algebra ideas in a 
curve-fi tting task, COHEN then asked, “Could 
linear algebra be applied directly in thinking 
about color-matching data?”

In the traditional presentation, color-matching 
data are transformed and one version is as 
good as another. COHEN asked a daring ques-
tion: “Is there an invariant description for a 
colored light?”
We may well ask, “What would it even mean, 
that a function or vector is invariant?” COHEN 

started with WYSZECKI’s idea of “metameric blacks.” If 2 lights have different SPDs, but 
are colorimetrically the same, they are metamers. Subtracting one of them from the other 
gives a metameric black, a non-zero function with tristimulus vector = 0. Consider an 
example of D65 and a mixture of 3 LEDs adjusted to match:
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blue = D65
red = Combo of LEDs 86, 56, 28, meaning
  HLMP-EH25-SV000 Red-orange
  HLMP-CM15-S0000
  Roitchner Lasertechnik LED 450-01U
Yxy(D65) = [1.057e+004, 03127, 0.3290]
Yxy(LED combo) = [1.057e+004, 03127, 0.3290]
black = metameric black, [X, Y, Z] = [0, 0, 0]

D65, LED combo,
Metameric Black

The fi gure at left shows the concept 
of metameric black. A mixture of 3 
LEDs matches D65. Subtracting D65 
from the LED combo gives the black 
graph, a function that crosses zero 
and is colorimetrically black. The 
metameric black is a component 
that you cannot see, as noticed by 
WYSZECKI.

COHEN then said, “Let’s take a light 
(such as D65) and separate it into the 
component that you defi nitely can 
see, and a metameric black.” (My 
wording.) The component that you 
defi nitely can see is the light pro-
jected into the vector space of 
the color matching functions. COHEN 
called that component... 

... ta-dah ...
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The Fundamental Metamer.

COHEN needed a formula to compute the fundamental metamer. As a practical matter, the 
“projection into the space of the CMFs” means a linear combination of CMFs that is a 
least-squares best fi t to the initial light. COHEN was clever in what he did. As on p. 3, let A 
be a matrix whose columns are a set of CMFs,

[ ]A q q q

a a a

a a a

a a a
= =
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11 12 13

21 22 23

31 32 33

For a light L(λ), we want to fi nd the 3-vector of coeffi cients, C
3×1

, such that

L ≈ AC  .                             (4)
Where ‘≈’ symbolizes that least-squares fi t. Today, you might do a web search and you 
would learn to solve for C using the

MOORE-PENROSE pseudo-inverse = A+ = (ATA)−1AT , so that           (5)
C = A+L = (ATA)−1AT L  .           (6)

That would give you C as a numeric 3-vector, and if we defi ne ...

Fundamental Metamer of L = L* = The least-squares fi t to L,      (7)

.  (1)

10

then,

L* = AC  .                                 (8)

A numerical value for 3-vector C gives a numerical vector for L*, but no new insight. The 
value of C—the coeffi cients for a linear combination of CMFs—depends on which CMFs 
you are using. Nothing is invariant.

Deriving everything from a blank page, COHEN in effect combined Eq. (6) and Eq. (8) 
to fi nd

L* = [A(ATA)−1AT] L  .                (9)

Then L is the original light, L* is its fundamental metamer, and expression in square 
brackets is projection matrix R:

R = A(ATA)−1AT  .                       (10)

COHEN noticed that R is invariant, and that led to other interesting ideas.

My algebra looks different from COHEN’s. But the invariant projection matrix R remains 
important. R is invariant in the strongest possible sense. If A is any set of equivalent 
CMFs, like any of the sets in Fig. 1, then R is the same large array of numbers, not scaled 
or transformed in any way. For proof, see Q&A.
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Fundamental Metamer Example
At left for example, the blue curve shows 
L = D65. The purple curve is L*, the 
fundamental metamer of D65. The two 
curves are metamers in the ordinary 
sense. L*, a linear combination of CMFs, 
is found by:

L* = RL  .       (11)
Eqs (8) and (11) have ‘=’ and not ‘≈’ 
because L* by defi nition is the least-
squares approximation.

So, that’s JOZEF COHEN’s
Highly Original Contribution.

Now on p. 5, we were talking about 
vectors...

COHEN References:
COHEN, JOZEF, “Dependency of the spectral refl ectance curves of the Munsell color chips,” Psychonom. Sci. 1, 369-370 (1964).

COHEN, JOZEF, Visual Color and Color Mixture: The Fundamental Color Space, University of Illinois Press, Champaign, Illinois, 
2001, 248 pp.
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So, CORNSWEET used vectors to deal with overlapping CMFs (p. 5, above). Now, to be 
consistent with JOZEF COHEN’s discoveries, and enjoy other benefi ts, we can make color 
vectors by starting with

Orthonormal Opponent Color Matching Functions.
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Orthonormal Basis
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Proportional to
y-bar

Functions are easy to generate, or can be found at 
http://www.jimworthey.com/orthobasis.txt  .
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Orthonormal Opponent Functions

Ω = [ω
1
 ω

2
 ω

3
]                    (12)

1. ω
1
 is achromatic sensitivity (whiteness). The function ω

1
 is proportional to the usual 

y-bar, but normalized. That is 〈ω
1
|ω

1
〉 = 1. ω

1
 is a sum of (red cones) + (green cones), 

with appropriate coeffi cients. There is no blue input to ω
1
 .

2. There is also no blue input to ω
2
 . ω

2
 is a difference, (red cones) – (green cones), 

such that it is orthogonal to ω
1
 .

3. The third function, ω
3
 , is the most messy. It has inputs from blue, red, and green 

cones.

Orthonormality

〈ω
i
|ω

j
〉 = δ

ij
                     (13)

meaning:

〈ω
i
|ω

j
〉 = 1 if i = j  ,

〈ω
i
|ω

j
〉 = 0 if i ≠ j  .
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Notation of bra, 〈f|, and ket, |g〉
A ket, |g〉 indicates a vector, usually a function of λ, written as a column 
matrix.

A bra, 〈f| indicates a vector written as a row matrix.

Therefore, the one is the transpose of the other: 〈f| =  |f〉T.

Then by the ordinary rules of matrices, a complete bracket represents an 
inner product:

〈f|g〉 = Σ fλgλ   ,              (14)

where the matrix product effectively sums over the wavelength domain. 
For instance, the λ domain might be [360, 361, 362, ... 830], then vectors 
would have 471 elements.
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Working Class Summary

Although many clever ideas (from COHEN, GUTH, THORNTON, BUCHSBAUM, etc.) guided its 
development, in the end the orthonormal basis is not radically new:

1. ω
1
 is proportional to old-fashioned y-bar 

(not shown). So ω
1
 is not new.

2. ω
3
 is similar to the old z-bar, which is 

essentially a blue cone function.

3.  In the XYZ system, a non-intuitive fea-
ture is x-bar, an arbitrary magenta primary. 
It is replaced in the new system by ω

2
, a 

red-green opponent function. The opponent 
function confronts the overlap of cone sen-
sitivities by fi nding a difference of red and 
green.

Let me say that again. An important feature 
of human vision is the overlapping sensitivi-
ties of the red and green cones. An opponent 
system confronts the issue of overlap. It re-

mixes the red and green signals into ω
1
 = red + green, and ω

2
  = red – green. 
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Practicality
A new orthonormal basis could be created for any standard observer or camera. If it 
will suffi ce to have orthonormal opponent functions based on the 1931 2° Observer, then 
tabulated data are available at http://www.jimworthey.com/orthobasis.txt .
11
Orthonormal Color Matching Functions
James A. Worthey, Sat 2004 Oct 23, 20:57:46
1st column is wavelength in nanometers.
2nd column is omega-1 = achromatic
3rd column is omega-2 = red-green
4th column is omega-3 = blue-yellow
Put columns 2-4 in a big matrix called Omega.
If ‘ is matrix transpose, you can do this check:
Omega’*Omega = Identity Matrix (3x3) .
OTOH, Omega*Omega’ gives Matrix R, the projection matrix.
First line of this fi le is the number of these comment lines!
360       4.457966e-007     -2.2732411e-007     5.19311685e-005
361     5.00036628e-007    -2.69438911e-007     5.83360809e-005
362     5.61041793e-007     -3.1959058e-007     6.55531511e-005
363     6.29616395e-007    -3.78213858e-007     7.36777575e-005
364     7.06564849e-007    -4.45743615e-007     8.28052783e-005
365     7.92691682e-007     -5.2261486e-007      9.3031092e-005
366     8.89228099e-007    -6.10848068e-007      0.000104556575
367     9.97816844e-007    -7.12879535e-007      0.000117585251
368     1.11987975e-006    -8.29715601e-007      0.000132215511
369     1.25683798e-006    -9.62361805e-007      0.000148545746
370     1.41011485e-006    -1.11182622e-006      0.000166674347
371     1.58042235e-006    -1.27658478e-006      0.000186520506
372     1.77058528e-006     -1.4627818e-006      0.000208614278
373     1.98519588e-006    -1.68299053e-006      0.000233970598
374     2.22884074e-006    -1.94971689e-006      0.000263604238
375     2.50611211e-006    -2.27561136e-006      0.000298530207
376     2.82701851e-006    -2.68023553e-006      0.000340414724
377     3.19139606e-006    -3.15714084e-006      0.000388841422
378     3.58857044e-006     -3.6799146e-006      0.000441701398
379     4.00786849e-006    -4.22203069e-006      0.000496885676
380     4.43861818e-006    -4.75688934e-006      0.000552285297

  etc, etc.  Recall that graphs are on page 12.
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Fun with Matrices
From p. 13,

Ω = [ω
1
 ω

2
 ω

3
]                    (12)

〈ω
i
|ω

j
〉 = δ

ij
               .      (13)

Orthonormality, Eq. (13) can be expressed in matrix form:

ΩΤΩ = Ι3×3     .         (15)
If you multiply Ω and its transpose in the reverse order, you get a different interesting 
result:

ΩΩΤ = R      .               (16)

Eq. (16) is easily proved, but not right now. [Just substitute A = Ω in Eq. (10).]

18

Graphing a Vector

Now recall Eq. (2) above, and let A = Ω . That is, let the set of CMFs be the orthonormal 
set. Then

V =  ΩT |L
1
〉.    (17)

The ket notation is a reminder that |L
1
〉 is a column vector. Three-vector V is a tristimulus 

vector and can be graphed in 3 dimensions. Below is the vector for a 603 nm narrow-band 
light at unit power.

The vector is drawn from the origin. Its length 
depends on the optical power of the light and the 
eye’s sensitivity at that wavelength.

The achromatic (= white) axis is the line from the 
origin that fades to white. Up-down is the red-green 
axis with red at the top. To the left from the origin 
is the V

3
 or blue axis. The opposite of blue is yellow. 

The graph paper is colorized according to the color 
directions. The intuitive meaning of the opponent-
color functions ω

1
, ω

2
, ω

3
, leads to an intuitive 

graph.
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5 Vectors

At left 5 colors are graphed:
THORNTON’s Prime Colors, 603 nm, 538 nm, 446 
nm, plotted at unit power, give long vectors. An 
extreme red, 650 nm, and a blue-green, 490 nm, 
also at unit power, give shorter vectors.

What is the signifi cance of vector length?

The algebra of color vectors is specifi cally about 
additive color mixing. The mixture of lights is 
predicted by the sum of their vectors.

20

5 Vectors Added

The same 5 vectors point from the origin, 
again for the 5 unit-power lights, at 603, 
538, 446, 650, and 490 nm. Then the 5 
vectors are added, tail to head. The resultant 
is a white vector.

So, vector length has a non-mysterious 
meaning:

According to the eye’s overlapping sensi-
tivities, and a light’s wavelength and ampli-
tude, a light maps to a vector with length 
and direction. Then vector addition predicts 
color matches.



21

1

0.8

0.6

0.4

0.2

0

y

0.80.60.40.20
x

4
0
0

4
5
04
6
0

470

480

490

500

510

5
2
0

5
3
0

5
4
0

5
5
0

5
6
0

5
7
0

5
8
0

5
9
0

6
0
0

6
1
0

6
2
0

6
3
0

6
5
0

Red cone peak

Video red
phosphor

Vid
eo

 b
lu

e

Blue cone peak

Video
green

Green cone peak

prim
e

prime

prime

= NTSC video primaries
= peaks of the 3 cone sensitivities
= prime colors

Long Vectors
Vectors [X Y Z]T are traditionally not 
graphed. Now suppose that it is 1950 and 
we are trying to invent color television. It 
will be helpful if the phosphor colors cor-
respond to long vectors in well-separated 
directions. Indeed, the NTSC phosphors 
are approximately at the longest-vector λs, 
which ≈ THORNTON’s Prime Colors.

 Wavelengths of Strong Action
in Mixtures, nm.

2º  Observer
Longest vectors: 445 536 604
Prime colors = 446 538 603
10º  Observer
Longest vectors: 445 535 600
Prime colors =  445 536 600

The vectorial approach explains why the red phosphor is so far from the red cone peak. In 
fact, a 3-D vector diagram will lay out the facts for any choice-of-primaries problem.
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Locus of Unit Monochromats
If λ of a narrow-band light is stepped through the spectrum and then a unit-power vector 
is plotted at each step, the vectors trace out a locus:

JOZEF COHEN referred to this curve in 
3 dimensions as “The Locus of Unit 
Monochromats.”

The curve is a spectrum locus. By mono-
chromat, Cohen meant a narrow-band 
light.

The word unit means unit-power. Each 
monochromat has the same optical power, 
which gives meaning to the vector lengths. 
The “unit power” idea was one of COHEN’s 
great leaps forward, because in the legacy 
system, a vector [X Y Z]T is found, and 
then we rush to plot it in the (x, y) 
diagram, losing the vector length. “Unit 
power” leads to a picture in which vector 

length has meaning.
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Locus of Unit Monochromats (continued)
The Locus of Unit Monochromats (LUM) can be shown as a surface; then the locus is 

really the curve along the edge.

JOZEF COHEN usually did not identify 
the LUM as a locus of tristimulus 
vectors. His vectors have more than 3 
elements, and no preferred axes.

The LUM as COHEN described it has 
an invariant shape. The LUM based 
on the orthonormal opponent func-
tions is the same invariant locus. 
Algebraic tinkering could rotate the 
LUM with respect to the axes, but its 
shape would not change (except for 
a potential mirror-image transforma-
tion).

To generate the LUM from the ortho-
normal basis, simply graph the rows 
of Ω.

24

5 Vectors Added (revisited)

The Locus of Unit Monochromats 
can be included to give a frame of 
reference to a vector sum or other 
interesting diagram.
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Composition of a White Light
The so-called “equal energy light” is one that has constant power per unit wavelength 
across the spectrum, indicated by 
a solid black line in the fi gure at 
the right.

The straight-line spectrum makes 
a simple discussion and is similar 
to a more realistic light, 5453 K 
blackbody (or 5500 if you like).

For the next step, let’s assume an 
equal-energy light that packs all 
of its power at the 10-nm points, 
400, 410, and so forth, as indi-

cated by the green dots.
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Straight line = equal energy light
Curve = 5453.3 K blackbody light
Dots = putative equal energy comprising narrow bands

Equal Energy and Blackbody
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Composition of a White Light (continued)
At the right, the 31 narrow bands add 
up to make Equal Energy White. Each 
band contributes an arrow: blue, blue 
..., blue-green, blue green ... green ... 
green-yellow ... orange ... red. Added 
tail to head, the arrows sum to a par-
ticular white.

The resultant of all that vector addition 
can be graphed as a single arrow from 
the origin. Conceptually, that arrow has 
3 components, also shown as white, 
red, and blue arrows. The one arrow, 
or the set of 3, those symbolize the 
traditional approach, except it would 
be done in XYZ space.

The chain of 31 arrows forms a pattern 
that will repeat for most white lights. 
It progresses towards blue, then swings 
in the green direction, then back towards red.
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Composition of a White Light (continued)
The swing toward red almost cancels the swing towards green. The greenish and reddish 
vectors are all present in the light, but red cancels green, approximately. I have explained 
the same idea in the past without vectors.

Now let this white light be shined on colored objects, and think of what an object color 
does. A red object refl ects a range of the reddest vectors, while absorbing green and blue. 
The light looks white, but it must have red in it to reveal the red object as different from 

gray or green.

The most saturated colors will be those that refl ect 
one or two segments of the spectrum and absorb the 
rest. You can think of those colors as “snipping out” 
a segment of the chain of vectors that compose the 
white light.

Is it a new idea to snip out part of the spectrum? No! 
The idea is called limit colors and is associated with MACADAM, SCHRÖDINGER and BRILL, 
among others. On the next page is an illustration from MACADAM’s book, showing the 
possible ways to snip out parts of the spectrum. I won’t discuss limit colors at length, 
but they are a well-known idea.

28

Figures from D. L. MACADAM, Color Measurement: Theme and Variations, Springer, Berlin, 
1981.

Observation:  Many discussions of limit colors focus on a gamut of possible colors. 
Here we look at a more basic step: how a single limit color interacts with the components 
of a white light.
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One Example: A Short-λ End “Optimal Color”
A hypothetical “short-end” color refl ects all wavelengths up to 540 nm. Longer wave-
lengths are absorbed. The light source is 
the equal-energy light. Then the refl ected 
light yields the vector chain seen at 
right. The entire equal-energy spectrum, 
as above, would sum to equal the one 
arrow, or the chain of three.

When the full chain of vectors for the 
equal-energy light is shown, you can pic-
ture pieces of the chain being snipped 
out according to MACADAM’s  4 types of 
optimal color:
• short-end
• long-end
• middle
• low-middle—meaning that short and 
 long λ’s are refl ected, but a band in 

 the middle is not refl ected.
We’ll revisit Composition of White Lights after a digression to more general issues.
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Why So Many 3-Dimensional Drawings?

Why do I use so darned many of these 3-dimensional drawings? For detailed analysis 
and design, one might see a way to capture key information in a fl at 2-D drawing. But 
the 3-D drawings have a

Special Charm.
If a person views some objects under a white light, then the eye and the light operate 
together. The eye and the light are each constants over the scene.

• The chain of vectors in 3-D preserves all the information that colorimetry can give.

• No assumption enters the chain of vectors in 3D. There are no preferred paint chips 
or anything like that.

• Almost no simplifi cation enters the drawings. If we stick to 10-nm steps, some tiny 
wiggles are lost, but conceptually—and in computer calculations—the smallest details 
can be used.

• In short, the 3D picture makes no pre-judgment about what is important.

• We can fi nd even more uses for Cohen’s space.

Here is another use of the orthonormal opponent functions ...
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Minimizing Correlation
One benefi t of the orthonormal basis is 
that v

1
, v

2
, v

3
 are less correlated than 

other sets of tristimulus values.
• In metrology, it is easier to predict 

propagation of errors if the starting 
variables are less correlated.

• In information theory, if variable p 
is known, and q can be estimated 
from p, then q carries less informa-
tion. The NTSC television standard 
uses opponent colors as a step in 
image compression, so the idea is 
not new.

Spectral refl ectances are available for 
a set of 5572 paint chips: ANTONIO 
GARCIA-BELTRAN, JUAN L. NIEVES, 
JAVIER HERNANDEZ-ANDRES, JAVIER ROMERO, “Linear Bases for Spectral Refl ectance 
Functions of Acrylic Paints,” Color Res. Appl. 23(1):39-45, February 1998. Professor 
Garcia kindly sent me the raw data.
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To make realistic visual stimuli, let the paint chips be illuminated by D65. Then one 
stimulus can be plotted against another to see if they are correlated or independent. 
GARCIA et al. put the chips in color groups, so I’ve colored the dots accordingly. The graph 
above shows that red and green cone stimuli are highly correlated, correlation coeffi cient 
= 0.976. X vs Y in the legacy system is a little better, while the opponent stimuli v

1
 and v

2
 

are most independent, Correlation Coeffi cient = 0.180 .
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Relationships Among Equivalent Sets of CMFs
The graphs just presented illustrate some advantages of the opponent functions. Equations 
were avoided, but below the surface was the idea that transformed CMFs are equivalent 
for color matching, but not equivalent for other purposes.

Now consider another application whose charm is more mathematical. Referring to 
Fig. 1, we recall that a transformed set of CMFs can be interesting and look different 
from another set that’s equivalent-for-matching. Any transformation of CMFs can be 
represented as a 3×3 matrix. If the starting functions are the orthonormal ones, then the 
transformation matrix has a simple form. Let C be any set of CMFs known to be linear 
combinations of Ω: C =  [|c

1
〉 |c

2
〉 |c

3
〉]. As always, Ω = [|ω

1
〉 |ω

2
〉 |ω

3
〉] . Then the sets 

are related by C = Ω T, where

T =    .     (18)

Notice that each matrix element is a tristimulus value for a function |c
j
〉 , and in fact 

each column is the tristimulus vector for one of the |c
j
〉 . The 3 vectors can be plotted 

in COHEN’s space.
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CMFs Graphed as if they were Lights
Thanks to orthonormality, the functions 
|ω

j
〉 plot to the v

1
, v

2
, v

3
 axes. (Not 

emphasized in the drawing!) Legacy 
function y-bar also plots to the +v

1
 axis. 

Red and green cones plot near to each 
other and to +v

1
. Also, r cones and g 

cones lie in the v
1
–v

2
   plane. Blue cones 

and z-bar are the same direction and 
quite close to +v

3
. x-bar is not in the 

v
1
–v

2
 plane, or on the spectrum locus. In 

short, the graph shows similarities and 
differences among functions.

Simplicity would be lost if a similar 
plot were made with axes X, Y, Z. Then, 
for example the y-bar function would 
not plot to the Y axis, since y-bar has 
non-zero inner products with x-bar and z-bar.
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Table 1. Correlation coefficient and direction cosine for various pairings of functions. The
correlation coefficients are based on D65 and the paint samples as in Figs. 1-3. Direction
cosine is a measure of overlap between the sensitivity functions.

Functions compared Correlation Coefficient Direction Cosine

R cones, G cones 0.976 0.918

1, 2 0.180 0

x , y 0.960 0.760

R cones, B cones 0.520 0.058

G cones, B cones 0.619 0.121

x , z 0.548 0.255

y , z 0.557 0.082

1, 3 0.522 0

2, 3 0.303 0

The orthonormal pairs, with cosine = 0, give the lowest correlation of the paint chips, but 
not zero correlation. With other populations of object colors, correlations may vary.
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Opponent Colors and Information Transmission

Above I’ve shown the benefi t of 
an opponent system for information 
transmission (image compression) in 
an empirical way, by starting with 
thousands of paint chips. BUCHSBAUM 
and GOTTSCHALK proceeded differently, 
deriving an opponent-color system 
to optimize information transmission. 
They started with cone functions that 
are similar to the ones I use, and got 
a result like my opponent basis. That 
is, they got an achromatic function (not 
shown) similar to y-bar, and the red-
green and blue-yellow functions shown 
at right. The achromatic and red-green 
functions have minimal blue input, and 
the blue-yellow function crosses the 
abscissa twice and looks very much like the ω

3
 function that I have been using.
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This equation, scanned right out of the original article shows how their fi rst two functions 
have little blue input, etc:

Their functions A, P, Q are orthogonal, but not normalized.

Long story short, BUCHSBAUM and GOTTSCHALK started with cone functions and derived 
opponent functions. They had a specifi c goal of optimum information transmission. I 
derived opponent functions in a simple way and discovered their connection to COHEN’s 
work. In the end, the sets of functions are extremely similar, confi rming that the opponent 
basis is appropriate for image compression and propagation-of-errors. All orthonormal 
sets based on the same cones lead to the same Locus of Unit Monochromats, so in that 
sense BUCHSBAUM’s set cannot be wrong.

[BUCHSBAUM, G. and A. GOTTSCHALK, “Trichromacy, opponent colours coding and opti-
mum colour information transmission in the retina,” Proc. R. Soc. Lond. B 220, 89-113 
(1983).]

(19)
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Value of Cohen’s Space and the Orthonormal Basis
Benefi ts of the orthonormal basis can be listed:

•  Makes nice spread-out vector diagrams. [Greatest separations possible.]
•  Opponent feature confronts the fact of red-green overlap.
•  Opponent feature gives meaning to the axes: whiteness, red-green, blue-yellow.
•  Gives decorrelated stimuli, good for image compression, or propagation of errors.
•  Orthonormal functions lead to simple formulas, such as Eq. (15) - (16). [Also see 
Q&A item on “Fun with Orthonormal Functions.”]
•  Using the orthonormal basis, and treating CMFs as lights, ω

1
 plots to the v

1
 axis, and 

so forth. By comparison, a non-orthogonal basis would lead to a crazy graph where, 
e. g. x would not plot to the X axis.

Cohen’s Insight; the Fundamental Metamer
The last list item is the most important and echos JOZEF COHEN’s ideas. If you have two 
lights (2 SPDs) as stimuli to vision, they have an intrinsic vector relationship. Each 
light has an invariant fundamental metamer, which is its projection into the vector space 
of the CMFs. Tristimulus vectors V obtained using Ω have the same amplitudes and vector 
relationships as fundamental metamers. Functions x and y are intrinsically 40.5° apart, 
but ω

1
, ω

2
, ω

3
 are 90° apart, so v

1
, v

2
, v

3
 are more appropriate axes than X, Y, Z.
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End Digression, Return to

Vector Composition of Lights

The fi gure at the right once again shows 
the equal energy light as a vector sum. 
Power is assumed  to be in narrow bands 
at 10 nm steps,

400, 410, ... , 700 nm  .
Although the power is the same in all 
bands, they map to vectors of varying 
amplitude and direction, according to the 
facts of color matching. As a practical 
matter, the little vectors are based on cer-
tain rows of matrix Ω.

A key issue for lighting and color is that 
the chain of arrows swings toward green 
and back towards red. If this light shines 
on a white paper, the green and red almost 
cancel, but if it shines on a red pepper,               , the red pigment selects a group of red 
vectors, by absorbing green ones. Then it matters how much red was in the light.
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Some Lights Have Less Red and Less Green

A white light has net redness or greenness that is small or zero. The same white point can 
be reached by different lights in different 
ways.

SPDs of two lights are plotted at right. 
The black line is for a High Pressure 
Mercury Vapor light, while the blue is 
JMW Daylight, adjusted to have the 
same tristimulus vector. (Yes, that means 
they are matched for illuminance and 
chromaticity.) The wavelength domain is 
chopped according to the dashed verti-
cal lines. The wavelength bands are 10 
nm, except at the ends of the spectrum, 
with most bands centered at multiples of 
10 nm. If one light then multiplies the 
columns of Ω, those products could be 
graphed as a distorted LUM, but we skip that step. Instead, the color composition of each 
light will be graphed as a chain of vectors.
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Comparing Color Composition of Lights

Now the same two lights are compared in 
their vector composition. The smooth chain 
of thin arrows shows the composition of 
daylight. Slightly thicker arrows show the 
mercury light.

The mercury light radiates most of its 
power in a few narrow bands, leading to a 
few long arrows that leap toward the fi nal 
white point. Compared to “natural day-
light,” the mercury light makes a smaller 
swing towards green, and a smaller swing 
back towards red. Such a light would leave 
the red pepper starved for red light with 
which to express its redness.
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dashed = high pressure mercury vapor
solid = JMW daylight
Tristimulus vectors of the lights are equal.

Red-green versus Achromatic

Comparing Lights (continued)

Above, two lights are compared by the narrow-band components of their tristimulus 
vectors. At right the same comparison is shown, but projected into the v1-v2 plane. 
The loss of red-green contrast is the main issue with lights of “poor color rendering,” 
and that shows up in this fl at graph. 
If you were really designing lights, 
you might use the v1-v2 projection 
as a main tool. You might want to 
add wavelength labels to the vec-
tors. (In the VRML picture, λ info is 
indicated by coloration. In the pic-
ture above, vectors that are approxi-
mately parallel pertain to the same 
band.)

You are not limited to a certain pro-
jection, or to any step that loses 
information.
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Comparing Lights (continued)
Other interesting data can be plotted in COHEN’s space. Suppose that the 64 Munsell chips 
from VRHEL et al. are illuminated fi rst 
by daylight and then by the mercury 
light. Since the mercury light lacks red 
and green, we expect it to create a gen-
eral loss of red-green contrast among 
the 64 chips.

The graph at right is a projection into 
the v

2
-v

3
 plane. Each arrow tail is the 

tristimulus vector of a paint chip under 
daylight. The arrowhead is the same 
chip under the mercury light. The light-
est neutral paper is N9.5, and is a proxy 
for the lights. Notice that 3-vectors pro-
jected into a plane still have the prop-

erties of vectors in the 2D plane. As 
expected, red and green paint chips 
suffer a tremendous crash towards neutral. Actual neutral papers appear as arrows of zero 
length. Each point is calculated from detailed spectral data.

+1.5

1

0.5

0

−0.5

v3
, +

 =
 b

lu
e,

 −
 =

 y
el

lo
w

+10.50−0.5−1
v2, + = red, − = green

v3 vs v2, Orthonormal Basis
64 Munsell Chips, Vrhel measurements
Lighting change: JMW daylight to Hg vapor

Fig. 6

N9.5
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Comparing Lights (continued)

For more details on this and other comparisons of lights, please see graphic materials for 
“How White Light Works,” at:

http://www.jimworthey.com/jimtalk2006feb.html
. Or, for various links, see the CIC 16 Tutorial Page:
http://www.jimworthey.com/qna/tutorial_cic16.html

.
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Cameras and the “LUTHER Criterion”

The LUTHER Criterion, also known as the MAXWELL-IVES Criterion:
For color fi delity a camera’s spectral sensitivities must be

linear combinations of those for the eye.
•  For instance, in Fig. 1 on p. 2, if one of the graphs represented a 

camera, it would meet the criterion.
•  On the other hand, it is less obvious how to describe a camera that 

departs from the ideal.
•  Some fi nd a fi gure of merit, which disposes of the issue, but teaches 

little.
•  At CIC 14, BRILL and I related the LUTHER Criterion to the Locus 

of Unit Monochromats, the LUM. We also brought THORNTON’s prime 
colors into the picture and developed the ideas in many steps.

•  However, the poster itself—available on my web site—presents a con-
cise method for the actual calculation, “The Fit First Method.”

•  Now, assuming that you appreciate the Locus of Unit Monochromats, 
I’ll explain the Fit First Method in a few bold steps.
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Bold Steps For Camera Analysis

• The eventual goal is to simulate the original scene. The LUTHER Criterion is a main 
issue, not incidental.

• Color vision depends on the 3 cone sensitivities (or other color matching functions) 
taken together as a system.

• The Locus of Unit Monochromats is an invariant 3D graph that summarizes color 
mixing by humans. It accounts for the 3 cone types as a system. (Any observer, but 
I use 2° Standard Observer.)

• The camera has its own LUM. If the LUTHER Criterion is met, it will be the same 
as the human LUM.

• By comparing the human and camera LUMs, we can relate the camera’s color-mixing 
properties to those of human, in detail.

• There is one stumbling block. The LUMs may be similar or identical as shapes 
fl oating in space. To compare them, we need to rotate them into good alignment. The 
Fit First Method creates good alignment.
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Compare Camera LUM to that of Human

At right is a screen grab from the 
virtual reality comparison of a Dalsa 
575 sensor’s LUM to the 2° human 
observer LUM. The spheres represent 
the LUM of the camera. The arrow-
heads trace the best fi t to human LUM 
by the camera functions.

Please try to see the big picture for a 
moment, letting go of the details. The 
human LUM is an invariant repre-
sentation of trichromatic color vision. 
The camera has its own LUM. We 
want to compare them, but must some-
how position them for a clear compari-
son. The Fit First Method fi nds the 
camera LUM in a good alignment.
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The Fit First Method
Conceptually, the camera’s LUM (spheres) is more fundamental than the fi t to the human 
LUM (arrowheads). The trick of the Fit First Method is to fi nd the best fi t fi rst, then 
fi nd the LUM from that.

Here is the computer code:
     Rcam = RCohen(rgbSens) # 1
  CamTemp = Rcam*OrthoBasis # 2
  GramSchmidt(CamTemp, CamOmega) # 3

The camera’s 3 λ sensitivities are stored as the columns of array rgbSens . Because of 
the invariance of projection matrix R, it doesn’t matter how the functions are normalized, 
or whether they are actually in sequence r, g, b. Statement 1 fi nds Rcam, the projection 
matrix R for the camera. RCohen() is a small function, but conceptually,

RCohen(A) = A*inv(A’*A)*A’        (20)
.
In other words, step 1 applies COHEN’s formula for the projection matrix. Then Rcam 
is the projection matrix for the camera. In step 2, the columns of OrthoBasis are 
the human orthonormal basis, Ω . The matrix product Rcam*OrthoBasis fi nds the 
projections of the human basis into the vector space of the camera. But, the wording 
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about projection is another way of saying that step 2 fi nds the best fi t to each ω
i
 by a 

linear combination of the camera functions. So, step 2 is the “fi t” step. 

Step 2 does 3 fi ts at once, but 
let’s look at just one. At right, 
the dashed curve is ω

1
, the human 

achromatic function. The camera 
in question happens to be a Nikon 
D1. The solid curve is a linear 
combination of that camera’s r, 
g, and b functions that is the 
least-squares best fi t to ω

1
. There 

would be other ways to solve 
the curve-fi tting problem, but pro-
jection matrix R is convenient. 
A best fi t is found for each ω

j
 

separately. The resulting re-mixed 
camera functions are not an ortho-
normal set.
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Step 3, Orthonormalize the Re-mixed Camera Functions
Since the re-mixed camera functions are computed separately, they are not orthonormal 
and would not combine to map out a true Locus of Unit Monochromats. But they mimic 
Ω and are in the right sequence. We need to make them orthonormal, which is what the 
Gram-Schmidt method does, Step 3.

Step
2
½

Step
3
¼



51

The two sets of graphs above look similar. But the one on the left shows the set of “fi t” 
functions. The one on the right shows the orthonormal basis of the Nikon D1. The thinner 
curves pertain to the 2° observer, the thicker ones to the camera.

Why Does it Matter?
When you have the orthonormal basis, for the eye or for a camera, you can do many 
things with it. Combining the 3 functions generates the Locus of Unit Monochromats. 
The orthonormal property leads to some simple derivations. On the Q&A page, see “Can 
we have fun with orthonormal functions?”

The Noise Issue
To extract color information, some subtraction must be done. The signals subtract but the 
noise adds (in quadrature). The noise discussion becomes more concrete when one can 
say exactly what subtraction will be done. The camera’s orthonormal basis is a natural 
to be the canonical transformed sensitivity. Orthogonality means “no redundancy” and 
normalization standardizes the amplitude. There’s a numerical noise example worked out 
in the CIC 14 article. For now, the point is that expressing camera sensitivities as an 
orthonormal basis is a giant step towards dealing with noise.
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Camera Example, Nikon D1

The graphs on p. 50 pertained to the 
Nikon D1, based on data from CIC 12. 
Here are the camera’s red, green, and 
blue sensitivities:
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The camera’s LUM can be compared to the eye’s. Rather than another perspective picture, 
we now view the LUMs in orthographic projection. The dashed curves are the human 
locus. The solid curves are the camera’s locus, while the tips of the small green arrows are 
points on the best-fi t sensitivity function.
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Now you may say “These curves mean nothing to me!” That may be at fi rst, but the 
graphs contain a complete description of the camera sensor, with no hidden assumptions,  
and few details lost.
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Finding Some Meaning in the Camera’s LUM

Consider the left-hand graph, “LUMs projected into v
2
-v

1
 plane.” Only the red and green 

receptors contribute to the human LUM in this view, and v
1
 is the achromatic dimension 

for human, based on good old y-bar. In this plane at least, the particular camera tends to 
confuse wavlengths in the interval 510 to 560 nm, which are nicely spread out as stimuli 
for human. Yellows, say 560 to 580 nm, have lower whiteness than they would for human. 
The camera has other differences from human that may be harder to verbalize. To the 
extent that fi nished photos look wrong, one could revisit these graphs for insight.

More Examples
Five detailed examples were prepared in 2006, and they are linked from the further 
examples page:
http://www.jimworthey.com/furtherCamDesignLUM.html . For instance, QUAN’s optimal 
sensor set indeed looks good in any of the graphical comparisons to 2º observer. The 
smooth and overlapping sensitivities of “Foveon X3 without prefi lter” allow it to discrimi-
nate wavelengths all through the spectrum.
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Something Completely Different: a 4-band Array
Sony publishes a specifi cation for a 4-band sensor array, the ICX429AKL. I’m not sure of 
the intended application, but it could poten-
tially be applied in a normal trichromatic 
camera. The Fit First Method readily fi ts 
the 4 sensors to the 3-function orthonormal 
basis. Some further calculations call for re-
examining the matrix methods, but in any 
case, the projection matrix handles the ini-
tial curve-fi tting step. The four sensitivities 
are seen at right. The key steps look the 
same:
 Rcam = RCohen(rgbSens)
 CamTemp = Rcam*OrthoBasis
 GramSchmidt(CamTemp, CamOmega)
. Recall that the projection matrix Rcam 
is a big square matrix of dimension N×N, 
where N is the number of wavelengths, 
which might be 471. The 4th sensor adds a 
column to the array rgbSens, but does not change the dimensions of the result Rcam.
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Camera Sensors as Digitized

camera = Sony ICX429AKL  4-color array
Fit first, then orthonormalized.
short dashes = cyan,     longer dashes = green
dash-dot = yellow,         solid = magenta 
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For an auxiliary step, I had to revise the program. The program output explains the 
algorithm as follows:

Similar to Eqs. 15-18 in CIC 14 paper, transform from sensors to CamOmega:
We want to solve CamOmega = rgbSens * Y , where Y is coeffi cients for 3 linear 
combinations.
MPP = inv(rgbSens’*rgbSens) * rgbSens’ 
Y = MPP*CamOmega =
     0.24845      0.13737      0.35971
    -0.34663     -0.43708     -0.45585
    -0.22433    -0.088434    -0.033503
     0.26839      0.22522     0.055984
Column amplitudes = vector length of each column = 
     0.55158      0.51812      0.58433

The columns of rgbSens actually contain the 4 sensitivities, cyan, green, yellow, 
magenta. MPP is the Moore-Penrose Pseudoinverse. (See Wikipedia and pp. 9-10 above.) 
Keeping in mind that the sensitivities are all ≥0, matrix Y gives some idea how much 
subtraction is done to produce the sensor chip’s orthonormal basis. That’s a step toward 
thinking about noise.
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Eye Approx. by Sony ICX429AKL

camera = Sony ICX429AKL   4-color array
dashed curves = 2-deg observer, orthonormal
solid = best fit of camera functions to 2-deg observer

Below are the 3 orthonormal functions, and also the 3 best-fi t functions made from the 
4 camera sensitivities. The only source of “noise” is the errors that I introduced while 
converting graphs to numbers. It becomes more visible here, after subtractions.
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Some noise also shows up in the projections of the LUM, below. It would appear that 
color fi delity is not good; reds and oranges may lose some redness. 
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Combining LEDs to Make a White Light
In the 1970s, WILLIAM A. THORNTON asked an interesting question: If you would make a 
white light from 3 narrow bands, how would the choice of wavelengths affect vision of 
object colors under the light? His research led to the Prime Colors, a set of wavelengths 
that reveal colors well. From that start, he invented 3-band lamps and was named Inventor 
of the Year in 1979. He continued his research and made the defi nition of prime colors 
more precise.

For the 2º Observer, THORNTON’s Prime Colors are 603, 538, 446 nm. [See CIC 6, and 
MICHAEL H. BRILL and JAMES A. WORTHEY, “Color Matching Functions When One Primary 
Wavelength is Changed,” Color Research and Application, 32(1):22-24 (2007). ] A light 
with 3 narrow bands at those wavelengths, will tend to enhance red-green contrasts, 
making some colors more vivid, though it would do a bad job with saturated red objects. 
You might think that combining 3 LEDs whose SPDs peak at the prime colors would 
enhance reds and greens. This idea falls short because LEDs are not narrow-band lights. 
We’ll now see what happens when real LEDs are combined.

At each step below, detailed information is graphed, not lost. Trial-and-error moves along 
quickly.
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Let LED Peaks ≈ the Prime Colors

The reference white is 5500 Kelvin blackbody. From 119 types measured by Irena Fryc, 
3 LEDs are chosen by their peak wavelengths, as shown at left. Then we see at right 
that the blackbody makes a bigger swing to green and back. This LED combo will dull 
most reds and greens.
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The peaks occur at 628, 522, and 446 nm

Composition of Lights,
Projected into the v1-v2 plane

For the next trial, we let the green be greener (shorter λ) and the red be redder (longer λ).  
In all cases, the LED amplitudes are adjusted for a color match with the blackbody. Again, 
SPDs are at left and the resulting composition of the lights is at right.

This light shows that indeed the LED 
combo can exaggerate reds and greens. A 
small exaggeration might be good, but this 
looks clumsy, with certain colors especially distorted. More details can be seen on the 
web page.
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Blue = blackbody 5500 K reference, green = 4 LEDs
Indices of the LEDs = 86, 78, 53, 28 and their names are
HLMP-EH25-SV000 Red-Orange
LEDTRONICS INC. L200CY5B, and
LEDTRONICS INC. BP280-OAG-050T-S
Roitchner Lasertechnik LED 450-01U
The peaks occur at 628, 588, 526, 446 nm

At this point, we guess that a broader band is needed in the red. The red prime color is at 
603 nm in the orange, but longer-wavelength reds plot to distinct vector directions, as seen 
in the locus of unit monochromats. The problem is known to lighting experts, but you can 
see it yourself in the 3D locus of unit monochromats. Our fi x is to let the “red LED” be in 

fact two reds, used in equal proportions.
Think of those green and red limit colors, 
refl ecting bands at the ends of the spectrum. Some of those reds and greens will still be 
dulled, but we are tracking the blackbody pretty close. More tweaking is possible.
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Vectorial Color - Summary
• Sets of functions can be equivalent for color matching, even though their graphs 

look different, and they have other meanings, such as cone sensitivities or opponent 
functions, Fig. 1. This great insight is part of our legacy from the 20th century and 
earlier.

• But, which color matching functions are best for graphing color vectors? There is 
no 20th-century answer, but you can take GUTH’s 1980 functions, and orthonormalize 
them, and that will work. That’s the orthonormal basis.

• JOZEF COHEN noticed that colors have intrinsic vector relationships. His work led to the 
invariant Locus of Unit Monochromats.

• In its original use, COHEN’s projection matrix R takes any spectral power distribution 
L and fi nds a metamer L* that is a linear combination of the CMFs used to make R.

• More generally, R can be used to fi t any function by a linear combination of functions. 
Using R in this way leads to the 3-step Fit First Method for fi nding a camera’s Locus 
of Unit Monochromats.

• We have analyzed lights and cameras. The graphical methods tend to preserve details, 
not lose them.

• Matrix R and the orthonormal basis lead to interesting algebraic methods. See the 
Q&A page.

• In making vector diagrams, you’ll fi nd that you must adjust a vector length, or adjust 
two vectors to match, and so forth. Those steps may feel unfamiliar.
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Invariants
My numbers and graphs are based on the 2º observer. If a different standard observer were 
used, details could change, but certain basic ideas would not change:

•  The formula for R:

R = A(ATA)−1AT  .                       (10)
•  The fact that R is always the same numerical array, for a given observer.
•  The relationship of R to the orthonormal basis:

ΩΤΩ = Ι3×3     .         (15)
ΩΩΤ = R      .               (16)

•  The LUM for the 2º observer, including the wavelengths of the longest vectors. 
Plotting the rows of Ω draws the LUM. A different orthonormal basis for the 2º observer 
will draw the same LUM.
•  The fact of red-green overlap, and the implication that a light can be defi cient in 
red and defi cient in green.
•  The idea that a camera has an LUM, and if its LUM is the same as the eye’s, then the 
camera meets the LUTHER criterion.

If vectorial color is forgotten and then re-invented in 50 years, these ideas will come out 
the same. They transcend the personalities of those who discovered them.
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Food for Thought...
Vectorial Color Is About Color Mixing.

It Is Not About Any Neural Processing, Only Transduction.

COHEN’s ideas relate to making best use of color mixing data. The orthonormal CMFs are 
a convenient way to map stimuli into COHEN’s space. They are not a hypothesis about 
retinal wiring.
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The End

Thank you very much for signing up and for your attention.

Please feel free to contact me at any time. I am always

eager to discuss lighting, color, cameras etc.

Jim Worthey

www.jimworthey.com
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Lighting for a Copy Machine??

In 2007, I promised to combine the camera analysis and the lighting analysis, to analyze 
something like a copy machine, where the sensors and the lighting are under engineering 
control. In 2008, I did not make that promise. This is now a bonus section. It gets 
confusing because there are 2 independent variables, the light and the sensors. It will be 
assumed that the copy machine uses a combination of LEDs for a light. Then the copier 
discussion is a continuation of the LED discussion above, pp. 58-61.

So, We Know How to Design a Light,

Now Let the Camera also be a Variable

Let the lights be the last pair demonstrated above. The reference white is 5500 K 
blackbody. The 2 red LEDs are in fi xed proportion, but the R, G, and B LEDs are 
adjusted to match the blackbody. The adjustment of R, G, B is done for human, and 
then separately for the camera. Using the Fit First method, it is possible to graph the 
human and camera sensitivities together, and then the compositions of the lights as seen 
by human and by camera.
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Analysis of (very hypothetical) Color Copier

The same LEDs are used 
as in the fi nal light design 
above. The camera is the 
Nikon D1, whose sensitivi-
ties are given on page 48. 
The data were swiped from 
DICARLO’s paper at CIC 12.
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A Different Hypothetical Copier

Now the light is the same, but 
the camera is the “optimal” 
sensor, taken from QUAN’s dis-
sertation.

The camera’s total “reach” into 
the green and back towards red 
is like the eye’s. But, many reds 
and greens will be dulled. You 
can see it by thinking of them 
as pass-band colors. (MACADAM 
limit colors as above)

The camera falls short because 
parts of the chain of vectors are 
too straight. Successive bands 
point in the same direction in 
color space, at least in this projection. We can see the same thing by looking at the QUAN 
sensor’s Locus of Unit Monochromats.
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Peaks are at [628, 588, 526, 446] nm.
Camera is Quan's Optimal Rgb, represented by orthonormal basis.

Composition of Lights,
Projected into v1-v2 Plane
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QUAN Sensor Locus of Unit Monochromats

At right, the LUM of the QUAN Sensor 
is compared to that of human. This 
sensor is better than many; It tracks the 
human LUM in a general way. We can 
see shortcomings in two areas.

Picture the “unit monochromats,” the 
vectors that defi ne the curves. The 
human vectors have steadily changing 
direction but long amplitude, from 
about 540 nm to 605 nm. Then the 
human LUM goes smoothly round the 
bend, but there is still some change 
of direction at 610, 620, 630 nm. By 
contrast, the QUAN sensor goes round 
the bend too soon, at 585. In a second quirk, the QUAN sensor tends to lump together 
520, 530, 540, and 550 nm, wavelengths that would be well discriminated by human. 
These features of the QUAN LUM translate into the too-straight regions when lights are 
composed on p. 61.
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The lumping-together of wavelengths around 540 is something that many cameras do, 
and it happens because the red sensitivity is negligible there. The QUAN sensor does 
discriminate those wavelengths along the v

3
 or blue-yellow dimension. There is no way to 

fi x the lumping-together by changing the light.

At the long-wavelength end, it might be possible to get some marginal improvement by 
boosting the light at long wavelengths, since the issue is a kind of absolute sensitivity 
dropoff.


