Question: How did Jozef Cohen derive the formula $\mathbf{R}=A\left(A^{\prime} A\right)^{-1} A^{\prime}$?

Cohen's Derivation of Matrix \mathbf{R}

Consider a set of K linearly independent column vectors q_{i} of length M. In color work, one might have $K=3$ and M $=471$, or $M=31$, for example. The vectors could be color matching functions or something else. It is assumed in any event that $K<M$. The vectors q_{i} are the columns of matrix $A_{M \times K}$. If $K=3$,

$$
A=\left[\begin{array}{lll}
q_{1} & q_{2} & q_{3}
\end{array}\right]=\left[\begin{array}{ccc}
a_{11} & a_{12} & a_{13} \tag{1}\\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33} \\
\vdots & \vdots & \vdots
\end{array}\right] .
$$

Then let N be an arbitrary vector of length M. In color work, it might represent the spectral distribution of a light. It is then desired to find a vector N^{*} which is a linear combination of the columns of A, and a least-squares best fit to N. [In other words, if the columns of A are color matching functions, N^{*} is the fundamental metamer. The asterisk has nothing to do with complex conjugate or Hermitian. Matrix transpose will be indicated below by the prime symbol, '.]

For illustration, let $K=3$, but the derivation will apply for any $K<M$. Then the columns of A are linearly combined according to the coefficients U :

$$
U=\left[\begin{array}{l}
u_{1} \tag{2}\\
u_{2} \\
u_{3}
\end{array}\right]
$$

That is,

$$
\begin{equation*}
N^{*}=A U . \tag{3}
\end{equation*}
$$

Eq. (3) expresses the idea that N^{*} is a linear combination of the vectors q_{i}. Then the least-squares condition must be applied. Expressing Eq. (3) in more detail,

$$
\left[\begin{array}{c}
a_{11} u_{1}+a_{12} u_{2}+a_{13} u_{3} \tag{4}\\
a_{21} u_{1}+a_{22} u_{2}+a_{23} u_{3} \\
a_{31} u_{1}+a_{32} u_{2}+a_{33} u_{3} \\
a_{41} u_{1}+a_{42} u_{2}+a_{43} u_{3} \\
\vdots
\end{array}\right]=\left[\begin{array}{c}
n_{1}^{*} \\
n_{2}^{*_{2}} \\
n_{3} \\
n^{*_{4}} \\
\vdots
\end{array}\right] .
$$

To minimize the vector distance from N to $N^{*},|N-A U|$ must be minimized, which is to say one must minimize the following sum of squares, SS:

$$
\mathrm{SS}=\left(n_{1}-\left[a_{11} u_{1}+a_{12} u_{2}+a_{13} u_{3}\right]\right)^{2}+
$$

$$
\begin{align*}
& \left(n_{1}-\left[a_{21} u_{1}+a_{22} u_{2}+a_{23} u_{3}\right]\right)^{2}+ \tag{5}\\
& \left(n_{1}-\left[a_{31} u_{1}+a_{32} u_{2}+a_{33} u_{3}\right]\right)^{2}+ \\
& \left(n_{1}-\left[a_{41} u_{1}+a_{42} u_{2}+a_{43} u_{3}\right]\right)^{2}+\ldots
\end{align*}
$$

Now define $D=N-A U$, so that $d_{j}=n_{j}-\left[a_{j 1} u_{1}+a_{j 2} u_{2}+a_{j 3} u_{3}\right]$.
With this substitution,

$$
\begin{equation*}
\mathrm{SS}=d_{1}^{2}+d_{2}^{2}+d_{3}^{2}+d_{4}^{2}+\ldots \tag{6}
\end{equation*}
$$

Taking the partial derivatives with respect to u_{1}, u_{2}, and u_{3} and setting them equal to zero gives

$$
\begin{gather*}
\partial \mathrm{SS} / \partial u_{1}=-2 a_{11} d_{1}-2 a_{21} d_{2}-2 a_{31} d_{3}-\ldots=0 \\
\partial \mathrm{SS} / \partial u_{2}=-2 a_{12} d_{1}-2 a_{22} d_{2}-2 a_{32} d_{3}-\ldots=0 \tag{7}\\
\partial \mathrm{SS} / \partial u_{1}=-2 a_{13} d_{1}-2 a_{23} d_{2}-2 a_{33} d_{3}-\ldots=0
\end{gather*}
$$

Eq. (7) amounts to a 3-element vector set equal to zero. Dividing through by the factor of -2 and then expressing the result as a matrix product,

$$
\begin{equation*}
A^{\prime} D=0 \tag{8}
\end{equation*}
$$

However, $D=N-A U$. Thus

$$
\begin{gather*}
A^{\prime}(N-A U)=0 \tag{9}\\
A^{\prime} N-A^{\prime} A U=0 \tag{10}\\
A^{\prime} A U=A^{\prime} N \tag{11}\\
\mathrm{U}=\left(A^{\prime} A\right)^{-1} A^{\prime} N \tag{12}
\end{gather*}
$$

We sought an expression for N^{*}, which equals $A U$. Therefore,

$$
\begin{equation*}
N^{*}=A U=A\left(A^{\prime} A\right)^{-1} A^{\prime} N \tag{13}
\end{equation*}
$$

In Eq. (13), we see that $A\left(A^{\prime} A\right)^{-1} A^{\prime}$ is the orthogonal projector projecting N into the three-space of the color mixture functions, or other column vectors in A. In short,

$$
\begin{equation*}
\mathbf{R}=A\left(A^{\prime} A\right)^{-1} A^{\prime} \tag{14}
\end{equation*}
$$

Eq. (14) is the desired result.

The proof above is taken from Jozef B. Cohen and William E. Kappauf, "Metameric color stimuli, fundamental metamers, and Wyszecki's metameric blacks," Am. J. Psych. 95(4):537-564 (1982). I have taken some liberty with the wording, but the proof is Cohen's.
JAW

