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Suppose that two lights have about the same chromaticity, but comprise different sets of 
narrow-band colors. Each light’s component colors, according to the power at each 
wavelength, map to vectors in color space, which add to give the light’s tristimulus vector. 
Decomposing the lights vectorially leads to a picture of how they differ, and how they will 
function when shined on colored objects. While the XYZ system can be used for vector 
operations, it is not well suited to vector diagrams and discussion. Using three orthonormal 
color-matching functions maps colors into Jozef Cohen’s more logical color space, which is 
free of arbitrary elements. The particular functions are a slightly arbitrary choice, but have a 
logic of their own and give intuitive meaning to the axes. In Cohen’s space, the rationale of 
RGB primaries such as television phosphors becomes obvious, since they are in regions 
where unit power gives the longest vectors. When a light of poor color rendering is analyzed, 
the chain of component vectors takes a shortcut to the white point, rather than progressing to 
green and back towards red. Three-band lights typically hit the long-vector wavelengths to 
give a slight enhancement of red-green contrast. A related publication is James A. Worthey, 
"Color matching with amplitude not left out," Proceedings of the 12th Color Imaging 
Conference, Scottsdale, AZ, USA, November 9-12, 2004,  http://www.imaging.org .  One color 
rendering example with a 3D graphic is on http://www.jimworthey.com . The Orlando 
presentation will emphasize color rendering, with examples to include LED lighting. In 
summary, the vectorial approach demystifies color rendering and presents it as an interesting 
topic for science and engineering. Three simple functions embody lifetimes of work by Cohen, 
Thornton, Brill, Worthey and others. 
 
 
For graphic material as presented, please use one of these links: 

• Jim Worthey home page:  http://www.jimworthey.com/index.html#Orlando 
• Direct link to web page with graphics:  http://www.jimworthey.com/jimtalk2006feb.html 
• Jump to fresh examples, if you are already familiar with the graphic presentation for 

Color Imaging Conference 12 in 2004, which is similar in the beginning: 
http://www.jimworthey.com/jimtalk2006feb.html#rendering 
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Color is often discussed in the same repetitive terms. A light’s spectral power distribution 
multiplies three standardized functions, zyx ,, , then those products are summed. For 

example, λ
λ
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=

=
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360
 and so forth, then x = X/(X+Y+Z), then the ordered pair (x,y) is plotted 

in the chromaticity diagram. The chromaticity diagram is then good for some tasks, such as 
specifying colored signal lights. Chromaticity (x,y) tells the signal light’s direction in color 
space, independent of its intensity. Other applications, such as television phosphors for 
example, intrinsically call for colored lights to be generated and then mixed. Although the 
textbooks will not tell you this[1], the red, green and blue TV phosphors are distinguished by 
their strong action in mixtures [2]. Colored objects under a white light can only reflect the 
colors available from the light, then those colors mix. Through computational experiments and 
other research, Thornton identified the strongly acting wavelengths, which he called Prime 
Colors [2,3,4,5]. 
 
To get beyond XYZ, we can look at the same facts in alternate forms. For example, the 
functions of Fig. 1 are sensitivities for the retina’s 3 cone types, but they are equivalent to 

zyx ,,  of the 2° observer in the color matches that they predict. A key feature of human vision 

 
Fig. 1. Cone sensitivities consistent with the 2° observer. Wavelengths of the function peaks are indicated. 
Fig. 2. Same cone sensitivities. Dashed lines indicate the Prime Color wavelengths. 
 
is the high degree of overlap of the red and green functions. As one measure of overlap, the 
red sensitivity peaks at 566 nm, in the yellow part of the spectrum. Fig. 1 by itself offers a 
lesson about color rendering. A white light is one that stimulates all three cone types. 
Because of overlap, a narrow band in the yellow part of the spectrum stimulates both red and 
green cones. Add a narrow band in the blue, and you have a white light comprising two 
narrow bands, as shown by the dashed line. But such a light loses reds and greens, reducing 
all objects to a palette of blue, white, yellow, and so forth[2]. 
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Red, yellow, and green lights are distinguished by their relative effects on red and green 
cones. The wavelengths that act strongly in mixtures will then be the ones where the 
overlapping functions are the most different. In Fig. 2, the cone sensitivities appear again, 
with vertical dashed lines that indicate the Prime Color wavelengths. The gaps between the 
functions are indeed large at the prime wavelengths, though Thornton’s most refined analysis 
was used for the actual derivation of the prime wavelengths[5, 6]. 
 

Jozef Cohen’s Color Space and the Orthonormal Basis 
A version of opponent colors will help us to confront overlapping sensitivities. That is, we 
consider a sum red + green as one “signal,” and the difference red – green as a second 
independent signal. The retina does such a transform before image data reach the optic 
nerve, and color television also uses signals organized as white-black, red-green and blue-
yellow. The following set of color functions will prove helpful for working with color stimuli: 

1. The first function, ω1(λ), is proportional to the usual y (λ), but re-normalized so that its 
summed-square value = 1. This “achromatic” function is in fact a sum of red and green 
sensitivities, y  =  0.6372r + 0.3924g. That is, red and green cones add to give a 
whiteness function. 

2. The second function, ω2(λ), is the opponent combination red – green, with the 
coefficients chosen so that it is orthogonal to ω1(λ). That is,  

( ) ( ) 021 =∑
λ

λωλω        .   (1) 

Function ω2(λ) is also normalized so that its summed-square = 1. 
3. The third function, ω3(λ), is a combination of all 3 cones, such that it is orthogonal to 

the other 2 functions, and again normalized. In the end, then, we have a set of 
orthonormal functions which are also an opponent-color set, Fig. 3. 

 
If a matrix Ω has the functions ωj as its 
columns, 
Ω = [ω1(λ)  ω2(λ)  ω3(λ)]  , (2) 
then for a light L the tristimulus vector V, 
which does the work of X, Y, Z is given by 
V =  ΩTL .  (3) 
Here L is the spectral distribution in column 
matrix form. The matrix product operation is 
the expected sums over λ. The 3 elements 
of V are independent measures of the light 
L, meaning that each number is as 
informative as possible. The first value, v1, 
has the intuitive meaning of whiteness, 
while v2 is redness (if > 0) or greenness (if < 
0). The last value, v3 , is blue versus yellow. 
 
 
 

 
Fig. 3. The orthonormal color matching functions.  
 



3 

So, these are simple and appealing ideas, 
that the vector components should be 
independent measures of the light, with 
intuitive color names on the axes of color 
space. A deeper meaning is found by 
reference to Jozef Cohen’s work. Cohen 
showed that the facts of color matching 
imply vector relationships among color 
stimuli[7,8]. Those relationships do not 
depend on the color matching functions that 
one starts with, whether zyx ,, , the cone 
functions of Fig. 1, or the set Ω, Fig. 3. In 
any case, the vector relationships among 
monochromatic (narrow band) lights are 
summarized by a curve in 3 dimensions, 
which Cohen called “the locus of unit 
monochromats.” [7,8] Combining the 
orthonormal functions into a 3-dimensional 
plot gives the same locus of unit 
monochromats, but now plotted in relation 
to specific axes. 

 
Fig. 4. The orthonormal color matching functions have now been combined to give a single curve in 3-
dimensional space. The curve is in fact Cohen’s locus of unit monochromats, but drawn with axes determined by 
the choice of basis functions. 
 
Cohen’s algebra emphasized the projection Matrix R, from which the locus of unit 
monochromats and other results can be found. For given color-matching data, say the CIE 2° 
observer, R is a completely fixed array of numbers. That simple fact makes clear the 
invariance of things that depend on R, such as the vector relationships among color stimuli. 
The orthonormal basis is further discussed in Reference 9 and in related materials on the 
author’s web site, http://www.jimworthey.com . 
 

Working Class Summary 
Someone may ask, “So you are selling a new set of color matching functions. You start with 
cones and create an orthonormal set, and that is interesting. But in the end, what do you have 
that is new?” If we consider zyx ,, , as the “old” functions, then ω1 is a multiple of y , so it is 
not new. The third orthonormal function, ω3, is really a blue function with a little extra variation, 
therefore it is similar to the old z .  So, for practical purposes, 2/3 of the “new” system is 
similar to the old system. The remaining old function is x , an arbitrary magenta primary. The 
orthonormal system replaces x  with the red-green opponent function, ω2, allowing the axes 
to have intuitive meanings, namely white, red or green, and blue or yellow. Any set of color-
matching functions can map stimuli to vectors. The orthonormal feature of the new cmf’s 
spreads out the vectors as much as possible.  
 

Application to Color Rendering 
The idea of “unit monochromats” is that a vector in color space is found for each light of unit 
power at a specific wavelength λ. Examples would be one-watt lights at 400 nm, 401 nm, and 
so on. Then Fig. 4 shows two ideas that we know intuitively: different wavelengths map to 
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different directions in color space, and they also map to different amplitudes. For the first time 
we have a scheme for clear talk about color vectors: 

1. The orthonormal basis spreads out the vectors and plots independent stimuli at right 
angles. 

2. The orthonormal basis gives a non-arbitrary scaling. To make a long story short, the 
element of V are scaled to the stimulus [9]. 

3. Axes have intuitive meaning. 
A basic starting point for a color rendering calculation is to have two or more lights that map to 
the same tristimulus vector—the same color and intensity—but have different spectral power 
distributions. For example, let the lighting change from daylight to high-pressure mercury light 
[10]. The tristimulus vectors are: daylight = [3.751, 0.03474, 1.396] ; mercury light =  [3.751, 
0.03204, 1.389]. The arrows in Figures 5 and 6 are based on 64 Munsell papers as measured 
 

Fig. 5. A color rendering example is presented in the 
new coordinates—essentially Cohen’s color space. The 64 Munsell chips measured by Vrhel et al. are 
considered to be viewed first under daylight and then under a high-pressure mercury light of the same tristimulus 
vector. The lighting change moves the colors towards neutral in the red-green dimension, v2. As a point of 
reference, the lightest neutral paper is indicated by it Munsell notation, N9.5 . 
Fig. 6. Another view of the same arrows indicating Munsell papers seen first under daylight and then under high-
pressure mercury light. Again the whitest paper, N9.5, is pointed out as a reference. 
 
by Vrhel et al [11]. The tail of each arrow is the stimulus vector of a paper under daylight, 
while the head is for the same paper under the mercury light. As a point of reference, the 
lightest Munsell paper is indicated by its notation, N9.5 . The mercury light acts much like the 
hypothetical 2-bands light in Fig. 1, dulling reds and greens, pulling them towards neutral in 
the red-green dimension. These figures are based on detailed calculation from lights and 
reflectances. The only novel element is the new color space—Cohen’s space with intuitive 
axes. The overall picture is simplified because the lights are neither red nor green, causing 
the neutral papers to line up perpendicular to the red-green axis. Other normal lights could 
have redness. The tiniest arrows indicate the neutral papers; gray is gray under both lights. 
Notice that the actual color vectors are points, or if you wish they are arrows from the origin. 
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The indicated arrows are difference vectors V(mercury vapor) – V(daylight). Figs. 5 and 6 
show two orthographic projections of facts in a 3-space. An alternate presentation on a 
computer screen uses a virtual reality viewer and allows the user to rotate the scene. For 
example, Fig. 4 is a screen grab of a virtual reality graph.[12] 
 

Components of a White Light 
Eq. (3)  expresses V by a matrix product. In the prototypical lighting situation, one light L 
shines on a number of surfaces. To emphasize that the color stimulus is a 3-vector, the 
stimulus vector of one surface si  can be written 

   
  or             .   (4) 

                                                                                    
 

 
A bra, such as 〈ω1L| is a row vector, while a ket such as |si〉 is a column vector, so that the 
complete bracket 〈|〉 denotes an inner product, a single number. The stimulus vector is three 
inner products, or in the right-hand version things are factored out to emphasize the vector 
containing the three functions ωjL , which are functions of wavelength ωj(λ)L(λ). These 
functions, the “object color matching functions,” [13] combine the one light and the three 
cmf’s, which apply for all surfaces. 
 
Taken as a unit, the 3×1 matrix is a vector function of wavelength. It could be graphed as a 
kind of distorted locus of unit monochromats, similar to Fig. 4. Let us have that concept 
without making the graph. At each wavelength, the vector function points in a certain 
direction, with a certain amplitude. If all those vectors are added, vectorially, tail-to-head, the 
result is the tristimulus vector of the light. To add all the vectors in one step, that would be a 
re-statement of Eq. (3), not interesting. Instead, let us add the vectors a few at a time, 
creating little color vectors which can be chained tail to head, to give the total vector. Then 

present the vector chain graphically. 
The example above referred to a daylight 
and a mercury vapor light with equal 
tristimulus vectors, in other words color-
matched lights. The spectral distributions 
are shown in Fig. 7. The vertical dashed 
lines indicate boundaries for chopping the 
spectra into narrow bands. The bands are 
10 nm wide except at the ends of the 
spectrum. The color vector for each band 
can be computed, leading to a 3-
dimensional graph, represented by a screen 
grab in Fig. 8. The arcing chain of thin 
arrows (near the bottom) shows how the 
color components of daylight add to give its 
total stimulus vector. The red and green 
components balance out. The mercury light 
 

Fig. 7. The color-matched mercury light (with spikes) and daylight (smoother), chopped by dashed lines. 
 
packs most of its power into a few narrow bands; thus, a few long vectors contribute much of  
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the vectorial total. Although the 
mercury light’s chain also arcs 
across the bottom of the picture, 
it has less red and less green. 
The red and green balance out, 
but there is less of each. Red 
and green objects (like bell 
peppers, for example) depend 
on the actual red and green 
components to be seen in vivid 
color. 
 
A third chain of 3 arrows also 
sums to the same point. In color 
they are gray, red, and blue. 
The gray arrow is right along 
the achromatic axis, while the 
red arrow is quite short and 
appears as an arrowhead only. 
The 3 components represent 
the total stimulus, the same 
information usually written as 
[X Y Z]. In the usual discussion, 
the 3 numbers are calculated, 
and it is then assumed that all 
the information from colorimetry 
has been used up. A drawing 

 
Fig. 8. Screen grab of a virtual reality graph. The locus of unit monochromats (Fig. 4) is shown for reference. 
The white axis points to the right, while red is up and green is down. Spheres show the blackbody locus at 
constant radius. The components of daylight add in a smooth arc. Mercury light components take a shortcut to 
the white point, with less deviation to green and back to red. 
 
like Fig. 8 compares lights on the basis of their component colors. The component vectors are 
found by simple colorimetry, just as total stimulus vectors are routinely calculated. 
 

LED Examples 
The spectral distributions of two white LEDs were found in a vendor data sheet [14]. Fig. 9 
shows the spectral power distribution of a “5500 K white LED,” and a matching daylight SPD 
for comparison. By my calculation, the LED’s color temperature is 6115 K. The stimulus 
vectors are LED: [3.234, 0.1824, 2.347] ; JMW daylight: [3.233, 0.1832, 2.349] . From Fig. 9, 
we can say in general terms that the LED is rich in yellow and poor in red and green. The 
chains of component colors confirm this idea. The chain which has slightly fatter arrows and 
takes more of a shortcut to the final point is the LED. Once again, the right-angle components 
of the LED’s stimulus vector (numbers right above) are shown by the fattest arrows and are 
equivalent to the usual tristimulus values of the light. The spheres indicate the blackbody 
locus at constant radius, indicating temperatures of 2000, 3000, 4000, 5000, 7000, 1e+004, 
2e+004, 1e+005 K. 
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Fig. 9. Spectral distribution of a “5500 K” white LED 
and a version of JMW daylight with the same 
stimulus vector. 
 
Fig. 10. The lights of the previous figure are now 
compared by looking at their component colors. The 
chain of slightly fatter arrows shows that the LED 
has more yellow, less red and green. 
 

The other white LED is a warmer color. I 
find the correlated color temperature = 
3300 K. 
 

Fig. 11. Spectra of warm white LED and blackbody 
matched by CCT. 
Fig. 12. Same 2 lights, compared by component 
colors. The stimulus vectors are not quite the same. 
 
In one simple scheme, the orthonormal 
color space applies major results of 
Thornton, Cohen, and Worthey and important ideas from M. H. Brill and S. L. Guth and 
others. Details have been published [9] and will hopefully be further explained in another new 
article. Reference [2] gives explanatory background. See my web site, 
http://www.jimworthey.com . 
 
In brief summation, use Guth’s 1980 model, apply his formulas with the usual zyx ,, . Keeping 
the sequence achromatic, red-green, blue-yellow, orthonormalize the functions by Gram-
Schmidt. The resulting color space is then exactly that of Jozef Cohen, graphed with specific 
axes. The color space is appropriate to all discussions of color mixtures, primary colors, and 
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so on, not only color rendering. On the other hand, use of vectorial color shows that color 
rendering is an interesting part of colorimetry: how white lights work. Combining the 
orthonormal functions draws Cohen’s “locus of unit monochromats.” The extreme points of 
that locus are approximately Thornton’s Prime Colors. Any set of color matching functions 
describes action in mixtures, so vector amplitude is “strength of action.” The amplitude of a 
stimulus vector in the orthonormal scheme is the same as what Cohen called the amplitude of 
the fundamental metamer, so it is not arbitrary. The fact of prime colors—that certain 
wavlengths are most distinctive in color mixing—is intrinsically a part of the method of color 
components, Figs. 8, 10, and 12. 
 
The goal of this paper has been to demystify color rendering. The vector method is not based 
on a hidden assumption about what is important. The emphasis is on a detailed display of 
facts. Such plots can be a working tool for lighting inventors, and a means for explaining a 
product. A vector plot is not especially helpful in studying object metamerism, but the 
orthonormal functions would work well in the opponent-based metamerism method [13]. 
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