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Abstract
Color-matching functions (cmfs) produced by monochromatic primaries change in an orderly
way when the wavelengths of the primaries are changed. When only one of the three
wavelengths is varied, the corresponding cmf changes in scale but not in shape. That is, changing
one primary changes all three cmfs, but if only the red primary is changed, for example, then the
red cmf changes only in scale. A set of primaries will exist such that each cmf has a maximum
value of 1, and that peak occurs at the primary wavelength, by a prior theorem. Those are
Thornton’s prime colors, and if they are the initial primaries, then changing one primary
wavelength can only increase the scale of its cmf. Precise prime color sets have been calculated:
(603, 538, 446) for the 2-degree observer, and (600, 536, 445) for the 10-degree observer.
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Introduction. 
The color matching experiment is a foundation of colorimetry, and a prototype for devices in
which primary colors are added, such as color television. When one set of color matching
functions (cmf’s) is known, they can be transformed to predict the cmf’s for any set of primaries.
This article concerns a thought experiment with three narrow-band primaries, and what happens
when the wavelength of one primary is changed. Such thought experiments, supported by
graphical illustrations, may enhance intuition about the connection of primary sets and
color-matching functions. 

Consider Figure 1. The thin solid lines are cmf’s for one experiment in which the CIE’s 2°
observer matches a test light against primaries of 603, 538, and 446 nm. The thicker dashed lines
apply when the primary wavelengths are 650, 538, and 446 nm. In other words, just the red
primary changes, shifting from 603 to 650. Since the green cmf must pass through zero at the red
and blue primary wavelengths1, it clearly changes shape when the red primary is shifted. The
zero crossings of the red cmf itself are not changed between the two cases, although the function
changes in scale. We now show that the red cmf changes only by a scale factor.

One CMF and its Primary Wavelength
Assertion: When one primary wavelength is changed (say the red wavelength only) then the
associated (red) color matching function changes only in scale, not in shape.

Thought experiment: Consider a hypothetical color matching experiment, in which the subject
views a test field of unit power and adjustable wavelength 8, and sets a matching light in the
comparison field. For the comparison field, the experimenter chooses wavelengths µ µ µ1 2 3, ,
for the narrow-band primaries. The subject makes a match by adjusting the amplitudes in the
comparison channels, with wavelengths remaining constant. At most settings of 8, one of the
primaries is in fact added to the test, and its amplitude is then considered to be a negative
number. In a colorimetry laboratory, the primary wavelengths might remain fixed for a long
time. We are now concerned with what happens or does not happen when one of the
wavelengths, say :1, is increased or decreased from its initial value.

For each setting of the independent variable 8, 3 dependent quantities result, the subject’s power
settings for the primary lights. Thus, 1 unit of 8 matches r(8) units of , plus g(8) units of :2,µ1

plus b(8) units of :3 . If they match, then we can predict that the matching lights will have the
same tristimulus vector, based on prior data. For convenience, and without loss of generality, we
can say that they give equal tristimulus vectors in the CIE’s XYZ system:
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On the right-hand side of Eq. (1) is the vector for the test light. On the left, each term of the
tristimulus vector for the matching light is found by a sum, computing a tristimulus vector from
the three power settings. Since it holds for each 8, if Eq. (1) can be solved, the entire table (or
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graph) of r, g, b can predicted from a table of x6, y6, z6. Cramer’s rule is now applied to solve for
r(8):
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In Eq. (2), the denominator is not a function of 8, so for each setting of  , it is aµ µ µ1 2 3, ,
constant that does not affect the shape of . The numerator does not depend on .( )r λ µ1

Therefore, as  is varied, the function  may be scaled up and down because of theµ1 ( )r λ
changing denominator, but that is the only change. The shape of  does not otherwise( )r λ
change, meaning, for example, that the wavelength of its peak does not change. The same
principle holds for the other primaries :2, :3, and their associated functions g(8), b(8).
More General Statement. In the laboratory or in a thought experiment, one needs the test light
to be a more or less narrow band centered at wavelength , otherwise the meaning of functionsλ
r, g, b, graphed versus , will be unclear. The same is not true of the primaries. Suppose thatλ
the red primary is not a narrow band at , but has a spectral power density, , where  isµ1 ( )p1 ν ν
wavelength. Then in Eq. (1), terms such as  are replaced by inner products, for example,( )x µ1

 ÷     . (3)( )x µ1 ( ) ( )xp x p1
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The inner products such as  carry along into Eq. (2), so the color matching function xp1 ( )r λ
varies only by a scale factor as the function  is changed. To say it more dramatically, the( )p1 ν

shape of the red cmf  depends only on the functions  and  defining the blue and( )r λ p2 p3

green primaries, and not on the function  defining the red primary itself. All three primariesp1
can be non-narrow bands, and the same principle holds. In all cases, the functions must satisfy
the criterion that the denominator determinant in Eq. (2) is nonzero. The notion of Prime Colors,
reviewed below, does depend on narrow primaries.

Broader Context
In general, all three primary wavelengths are parameters that can be arbitrarily set, but that does
not mean all primary sets are created equal.  Remarkably, the three color matching functions
tend to peak at certain preferred wavelengths, which W. Thornton reported as 604, 541, and 447
nm for the 2° observer2. These numbers are averages found after locating the peaks for 792
unique combinations of  primaries2. Thornton’s preferred wavelengths, the theorem above, and
other facts1,3,4, come to life if the graph of color matching functions is animated by stepping
through primary sets at short time intervals5. Such an animation is available on
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http://www.jimworthey.com/matchingprime.html .

Primary Election. In the race to become the red primary, 603 nm and 650 nm are not equally
qualified candidates. The narrow band at 603 nm requires less power at its peak. Simple
reasoning says that when wavelength 8 of the unit power test light equals , then unit power ofµ1

 and zero power in the other primaries will match the test. By the theorem just proven, if oneµ1

adjusts only , holding ,  constant, the peak will not move left or right. The wavelengthµ1 µ2 µ3

of the peak happens to be 603 nm, and if one sets  = 603, the peak amplitude is found to beµ1

unity. Therefore 603 nm is a least-power setting for , given that  = 538,    = 446.µ1 µ2 µ3

If the set of primaries is optimized so that each of the color matching functions is 1{ , , }µ µ µ1 2 3

at its peak, then the peaks will coincide with the primary wavelengths. By Thornton’s most
refined definition, those wavelengths are the Prime Colors6. In 1971, Thornton showed that three
wavelength regions were “most effective” in the context of color mixtures and color rendering.
Later he introduced the name Prime Colors for these special wavelengths, and defined them in
terms of color matching experiments as what we can call the least power primaries.

The least-power property of the prime-color wavelengths shows up in the fact that those
wavelengths maximize the determinant in the denominator in Eq. (2)1 . The peak of r(8) occurs
when the derivative of the numerator with respect to 8 = 0, meaning that the numerator is at a
maximum. For the peak to be at the primary wavelength, it must occur when numerator =
denominator. Therefore, the derivative of the denominator with respect to :1 is also zero. The
argument extends to :2 and :3 as well.

By the least power criterion, and using CIE color matching functions that are interpolated and
smoothed to 1-nm intervals8, we have computed the prime color sets in Table 1.

Table 1. Prime color sets (= least power primaries) as defined by Thornton.

red green blue

1931 2° Observer 603 nm 538 446

1964 10° Observer 600 536 445

JAW first wrote an algorithm based directly on the concept that the least power primaries should
coincide with the peaks. A set of primaries is chosen arbitrarily and the related cmf’s are found,
then the peaks of those cmf’s. Those peaks become the primaries in the next iteration; new cmf’s
are found, and then their peaks. Wavelength is treated as an integer, so when the primary set
repeats once, the process ends, typically after 5 iterations. When thousands of starting conditions
are tried, a few cases fail to converge, the rest lead to the same result, and all peak amplitudes in
the final iteration are 1.0000000, based on double-precision calculation.
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Relying on the theorem in Ref. 1, MHB independently wrote an algorithm to find the set of
wavelengths which maximize the determinant in the denominator of Eq. (2). The same
wavelength sets result. JAW then wrote a different program based on MHB’s idea, and again the
same wavelength sets were found.

Conclusion
In a notional color matching experiment with narrow-band primaries, if only one primary
wavelength is changed, the associated color matching function will change in amplitude, but not
in shape. This theorem corroborates Thornton’s observation that the peaks of the cmf’s tend to
stay in narrow wavelength ranges2. Numerical values of the Prime Color wavelengths are
presented, based on prior theorems.

Acknowledgment. The animation was created first, with assistance from Nicholas J. Worthey. It
inspired MHB to discover the theorem.
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Figure 1. Predicted color matching functions for the CIE’s 2° observer. When the observer
matches a test light with primaries of 603, 538, and 446 nm, the thin solid functions apply. The
thicker dashed lines are the result when the blue and green primaries are unchanged, but the red
one is set to 650 nm.




